University of Technology

الجامعة التكنولوجية

First Cycle – Bachelor's degree (B.Sc.) – Computer Aided Desing and Computer Aided Manufacturing Engineering

| Table of Contents |

1. Mission & Vision Statement بيان المهمة والرؤية |

2. Program Specification | مواصفات البرنامج

3. Program (Objectives) Goals | أهداف البرنامج

4. Program Student learning outcomes | مخرجات تعلم الطالب

5. Academic Staff | الهيئة التدريسية |

6. Credits, Grading and GPA | الاعتمادات والدرجات والمعدل التراكمي |

7. Modules | المواد الدراسية

8. Contact | اتصال

Program Catalogue for CAD/CAM Undergraduate Students

1. Mission & Vision Statement

Vision Statement

The CAD/CAM academic staff of the Dept. of Production Engineering and Metallurgy believe that students gain a comprehensive understanding of computer-aided design and computer-aided manufacturing through a combination of theoretical coursework, practical laboratory experiences, research, and real-world applications. The program aims to equip students with the necessary knowledge and skills to become proficient CAD/CAM professionals. Small class sizes foster close interaction between faculty and students, creating an environment conducive to learning, innovation, and personal growth.

Mission Statement

The CAD/CAM program is committed to providing undergraduate students with a strong foundation in computer-aided design and computer-aided manufacturing. The curriculum is designed to impart fundamental knowledge in CAD/CAM principles, tools, and techniques while emphasizing hands-on experience and practical skills development. Our mission is to prepare graduates for successful careers in the CAD/CAM industry, research, or further academic pursuits. The program also strives to support interdisciplinary collaboration and contribute to technological advancements in various fields.

2. **Program Specification**

Programmed code:	BSc-CADCAM	ECTS	240
Duration:	4 levels, 8 Semesters	Method of Attendance:	Full Time

The CAD/CAM program provides a comprehensive education that integrates design and manufacturing processes, encompassing the field's theoretical and practical aspects. The degree program offers a broad perspective, addressing topics ranging from foundational CAD/CAM principles to advanced techniques. Students have the opportunity to specialize further in specific areas of CAD/CAM, such as product design, manufacturing automation, or computer graphics.

The curriculum is designed to accommodate students with varying interests and career goals. In the first year, students are exposed to the fundamentals of CAD/CAM, allowing them to develop a solid understanding of the subject. At the end of the first year, students can choose to transfer to specialized degree programs within CAD/CAM, based on their preferences and aptitude. Throughout the program, students have the freedom to select a significant portion of their module credits, ensuring a well-rounded education that reflects the complexity of CAD/CAM applications.

Practical training is emphasized throughout the program, with dedicated laboratory courses and opportunities for research and real-world projects. Field trips and industrial visits provide students with exposure to the practical applications of CAD/CAM in various industries. Additionally, an independent research project is undertaken in the final year, allowing students to apply their knowledge and skills to solve real-world problems or explore new avenues of research.

Personal tutors and academic advisors guide students through their academic journey, providing mentorship, academic support, and career guidance. The program also encourages international study experiences and industrial placements to broaden students' perspectives and enhance their professional development.

3. Program Objectives

- 1. To provide a comprehensive education in CAD/CAM, covering theoretical concepts, practical skills, and industry-relevant knowledge.
- 2. To prepare students for diverse postgraduate paths, including pursuing advanced degrees, entering the workforce, or engaging in research and development.
- 3. To equip students with hands-on training in CAD/CAM software, hardware, and related technologies, including proficiency in computer-aided design, computer-aided manufacturing, and computer graphics.
- 4. To foster effective communication skills, both written and oral, to enable students to convey technical information clearly and professionally.
- 5. To cultivate critical thinking, problem-solving, and analytical skills to address complex CAD/CAM challenges and contribute to innovative solutions.
- 6. To provide opportunities for students to engage in undergraduate research, internships, and study-abroad programs, allowing them to apply CAD/CAM principles in real-world settings and gain practical experience.

4. Student Learning Outcomes

Upon completion of the CAD/CAM program, students will have achieved the following learning outcomes:

Outcome 1: Proficiency in CAD/CAM Concepts Graduates will demonstrate a deep understanding of CAD/CAM principles, techniques, and technologies, including proficiency in computer-aided design, computer-aided manufacturing, and related software tools.

Outcome 2: Effective Communication Skills Graduates will possess strong oral and written communication skills, enabling them to effectively communicate technical information, collaborate with interdisciplinary teams, and present their work professionally.

Outcome 3: Practical Laboratory and Field Skills Graduates will be able to apply CAD/CAM principles and techniques in practical settings, demonstrating proficiency in laboratory experiments, field studies, equipment operation, and adherence to safety protocols.

Outcome 4: Scientific Knowledge and Historical Context Graduates will demonstrate a comprehensive understanding of the historical development of CAD/CAM, including foundational theories, industry trends, and technological advancements that shape the field.

Outcome 5: Data Analysis and Interpretation Graduates will possess strong quantitative skills, enabling them to conduct data analysis, interpret results, and make informed decisions in CAD/CAM applications.

Outcome 6: Critical Thinking and Problem-Solving Graduates will demonstrate the ability to think critically, analyze complex problems, and develop innovative solutions in the field of CAD/CAM through research projects and practical assignments.

The CAD/CAM program at University of Technology aims to produce well-rounded graduates who are equipped with the knowledge, skills, and attitudes necessary to excel in the ever-evolving field of computer-aided design and computer-aided manufacturing.

5. Academic Staff

Faculty Name	Highest Degree	Title
Aseel Hamad Abed	PhD	Assistant prof.
Mohanned M.H. Al-Khafaji	PhD	Assistant prof.
Aqeel Sabree Bedan	PhD	Assistant prof.
Atiya Al Zuheri	PhD	Assistant prof.
Abass Maitham Jabber	PhD	Assistant prof.
Mohanad Qusay Abbood	PhD	Assistant prof.
Hussam Lefta Alwan	PhD	Assistant prof.
Baraa M.H. Albaghdadi	PhD	Assistant prof.
Ali Albairy	PhD	lecture
Alaa Hassan Shabeeb	PhD	lecture
Mazin Al-wswasi	PhD	lecture
Ammar Mahdi Saleh	PhD	lecture
Mustafa Mohammed Abdulrazaq	اجازة / M.Sc. دراسية	lecture

Mostafa Adel Abdullah	اجازة / .M.Sc دراسية	lecture
Safaa Kadhim Ghazi	M.Sc. اجازة در اسية/	lecture
Nareen Hafidh Obaeed	اجازة / .M.Sc دراسية	lecture
Karrar Qahtan Khalaf	اجازة / .M.Sc دراسية	lecture
Hind Hadi Abdulridha	اجازة / .M.Sc دراسية	lecture
Marwa Qasim Ibraheem	اجازة / .M.Sc دراسية	lecture

6. Credits, Grading and GPA

Credits

University of Technology is following the Bologna Process with the European Credit Transfer System (ECTS) credit system. The total degree program number of ECTS is 240, 30 ECTS per semester. 1 ECTS is equivalent to 25 hrs student workload, including structured and unstructured workload.

Grading

Before the evaluation, the results are divided into two subgroups: pass and fail. Therefore, the results are independent of the students who failed a course. The grading system is defined as follows:

	GRADING SCHEME مخطط الدر جات					
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Group	C - Good	ختر	70 - 79	Sound work with notable errors		
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب - قيد المعالجة	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:						

The Number of Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Calculation of the Cumulative Grade Point Average (CGPA)

1. The CGPA is calculated by the summation of each module score multiplied by its ECTS, all are divided by the program total ECTS.

CGPA of a 4-year B.Sc. degree:

CGPA = [(1st module score x ECTS) + (2nd module score x ECTS) +] / 240

7. Curriculum/Modules

Semester 1 | 30 ECTS | 1 ECTS = 25 hrs

<u> </u>						
Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
MATH111	Mathmatics	93	82	7.00	В	
COPR112	Computer Programing I	63	62	5.00	В	
EDDG113	Engineering Drawing and Descriptive Geometry	65	35	4.00	С	
ELEN114	Electrical Engineering	63	87	6.00	В	
FREL11X	free elective	48	52	4.00	E	
WORK106	Workshop I	93	7	4.00	S	

Semester 2 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
ENME121	Engineering Mechanics	93	82	7.00	С	
MAPR122	Manufacturing Processes I	63	62	5.00	С	
MASC123	Materials Science I	63	62	5.00	С	
CAED124	Computer Aided Engineering Drawing	60	65	5.00	С	EDDG113
FREL1XX	free elective	48	52	4.00	Е	
WORK106	Workshop I	93	7	4.00	s	

8. Contact

Program Manager:

Aseel Hamad Abed | Ph.D. in production eng. | Assistant Prof.

Email: aseel.h.abed@uotechnology.edu.iq

Mobile no.: 07711388758

Program Coordinator:

Ali Albairy | Ph.D. in production eng. | Lecture

Email: 70120@uotechnology.edu.iq

Mobile no.: 07736720960

MODULE DESCRIPTION FORM

Module Information						
Module Title		Chemistry 1		Module D	Delivery	
Module Type		Е		• Theory		
Module Code		СНЕМ116		LectureLab		
ECTS Credits		4.00		TutorialPractica		
SWL (hr/sem)		100				
Module Level UGI		Semester	Semester of Delivery 1			
		Department of Production Engineering and Metallurgy	College			
Module Leader	Dr. Wafaa K. Mahmood Dr.Samar Saadi Hussein Dr.Hayder Naser Hussein Lec.Eman Esam Arif		e-mail	wafaa.k.mahmood@u Samar.S.Hussein@uc hayder.nasser.iq 70023@uotechr	etechnology.edu.iq	
Module Leader's Acad. Title		Dr.		Leader's fication	Ph.D.	
Module Tutor			e-mail			
Peer Reviewer	Name		e-mail			
Scientific Committee Approval Date			Version Nu	ımber		

Relation with other Modules				

Module Aims.	Learning	Outcomes and	d Indicative	Contents
Module / Mills.	Learning	Outcomes and	a marcan ve	Contents

The aim of the undergraduate chemistry course is to provide students with a solid foundation in the fundamental principles, theories, and practical aspects of chemistry. This course aims to cultivate students' understanding of the composition, structure, properties, and reactions of matter, while fostering their critical thinking and problem-solving skills. By delving into analytical chemistry, the course aims to equip students with a comprehensive understanding the chemical sciences. Additionally, Module Aims undergraduate chemistry course seeks to instill techniques, safety laboratory protocols, and experimental design principles, enabling students to gain hands-on experience and develop their scientific inquiry and research skills. Ultimately, the goal of the undergraduate chemistry course is to prepare students for further studies and careers in chemistry-related fields, as well as to provide a broader understanding of the role and significance of chemistry in our daily lives and the advancement of scientific knowledge. 1. Understanding the basic principles and calculations related to the general chemistry. 2. Analyzing the theoretical aspects of the analytical Module Learning chemistry problems to understand and solve. Outcomes 3. Apply the fundamental knowledge gained from the fundamental class in the laboratory session to visualize and evaluate the results.

	1. To enable Students to understand and solve
	problems related to the basic principles of Analytical
	Chemistry.
	2. To enable students to understand and solve
	problems related to volumetric analysis and its sub-
	disciplines.
Indicative Contents	3. To enable students to understand and solve
	problems related to reactions in general and their
	sub-disciplines.

4. To enable students to be directly engaged with the hands-on chemistry experience by applying the fundamental knowledge gained in the lab.

Learning and Teaching Strategies

Strategies

The main strategy implemented in the Problem Based Learning (PBL). In PBL, students engage collaborative and inquiry-based activities to develop critical thinking, problem-solving, and communication skills. Rather than relying on traditional lecture-style teaching, PBL encourages students to take an active role in their learning by identifying and investigating authentic problems, applying knowledge from various disciplines, and working in teams to develop innovative solutions. This promotes approach deeper understanding, as students are motivated by the relevance and authenticity of the problems they encounter. By actively participating in the problemsolving process, students develop essential skills that are transferable to diverse contexts, fostering lifelong learning and preparing them for success in their academic and professional pursuits.

Student \Workload (SWL)				
Structured SWL (h/sem)	48	Structured SWL (h/w)	3	
Unstructured SWL (h/sem)	52	Unstructured SWL (h/w)		
Total SWL (h/sem)		100		

Module Evaluation					
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	3	10	4,8,12	
Formative	Assignments	4	10	5,7,10	
assessment	Projects /Lab,	2	10	3,7	
	Report				
Summative	Midterm Exam	1	20	9	
assessment	Final Exam	2	50	14	
Total assessment		100			

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week1	1. Introduction
Week2	2. Matter and measurements.

	3. Analytical chemistry definitions.
	4. Chemical analysis steps.
Week3	 Formula weight. The mole unit.
Week4	 Molarity Molality
Week5	Normality
Week6	 Density and specific gravity. Dilution problems
Week7	 Expressing concentrations. Concentration types (PPT, PPB, PPM)
Week8	Introduction to Volumetric Analysis
Week9	 Titrimetric methods of analysis. Requirements for a primary standard.
Week10	 Molarity volumetric calculations. Normality volumetric calculations.
Week11	Back Titration
Week12	The Titers
Week13	Reactions in Aqueous solutions
Week14	Limiting reactions
Week15	Theoretical Yields

Learning and Teaching Resources				
Text Available in the Library				
Required Texts	Non	NA		
Recommended Texts	 "Fundamentals of Analytical Chemistry" by Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. 	Yes		

	Crouch Publisher: Cengage Learning 2. "Analytical Chemistry: An Introduction" by Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch Publisher: Cengage Learning	
Websites		

	Grading Scheme				
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امتياز			
Success	B - Very Good	جيد جدا			
Group (50 -	C - Good	ختر			
100)	D - Satisfactory	متوسط			
	E - Sufficient	مقبول			
Fail Group (0 - 49)	E - Sufficient	راسب قيد المعالجه			
	F - Fail	راسب			

Note: Marks with decimal places above or below 0.5 will be rounded to the higher or lower (for example a mark of 54.5 will be rounded to 55. whereas a mark of 54.4 will be rounded to 54. The University- his'd policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above

MODULE DESCRIPTION FORM

Computer Aided Engineering Drawing (CAED)

	Module Information					
Module Title]	Computer A Engineering D			Module Do	elivery
Module Type Module Code		CAED124		TheoryLectureLabTutorial		
ECTS Credits SWL		5 125		O PracticalO Seminar		
(hr/sem) Module Level		_		and an of Dal	:	2
Module Level		1	Ser	nester of Del	ivery	2
Administering Department		Branch of Colleg		Production	n Engineerii	ng and Metallurgy
Module Leader		Iazin Ghazi Abdulrazzaq	e-mail	mazin.g.abo	lulrazzaq@ı	otechnology.edu.iq
Module Leader's Acad. Title		Lecturer	Module	Leader's Qua	lification	PhD
Module Tutor			e-mail			
Peer Reviewer Name	,		e-mail			
Scientific Committee Approval Date			Version	n Number		

Relation with other Modules

Prerequisite module	EDDG113	Semester	1
Co-requisites module	None	Semester	

Module Aims,	Learning Outeomes and Indicative Contents
Module Aims	This module aims to introduce students to SOLIDWORKS in order to equip them with a powerful and versatile tool for 3D modeling and design. By learning SOLIDWORKS, students gain the skills necessary to create intricate and precise virtual representations of objects. This software enables them to explore concepts in engineering and product design. Through hands-on practice and project-based learning, students develop proficiency in utilizing SOLIDWORKS' robust features and tools, enabling them to transform their ideas into tangible, real-world designs.
Module Learning Outcomes	 1- Understanding the User Interface: Gain familiarity with the SOLIDWORKS user interface, including navigation, menus, toolbars, and commands. 2- Creating 2D Sketches: Learn how to create and modify 2D sketches using various drawing and editing tools, such as lines, circles, arcs, and constraints.
	3- Applying Geometric Relations: Understand how to apply geometric relations, such as coincident, parallel, tangent, and concentric constraints, to establish relationships between sketch entities.
	4- Creating 3D Models: Develop the ability to create 3D models by extruding, revolving, sweeping, lofting, and filleting 2D sketches, and manipulating solid bodies.
	These module learning outcomes aim to provide students with a comprehensive understanding of SOLIDWORKS and its various features, enabling them to effectively utilize the software for design and engineering purposes.

Indicative Contents

- 1- Introduction to SOLIDWORKS:
- Overview of the software and its applications
- User interface and navigation
- Basic settings and customization options

2- Sketching:

- Creating and editing 2D sketches
- Geometric relations and constraints
- Dimensioning and annotations

3- Basic Part Modeling:

- Extruding and revolving features
- Fillets and chamfers
- Creating holes and threads
- Shell and rib features

4- Advanced Part Modeling:

- Sweeping and lofting features
- Advanced patterns
- Surface modeling techniques
- Multibody modeling and assemblies

Learning and Teaching Strategies

Strategies

- 1- Hands-on Practice: Provide students with ample opportunities for hands-on practice with the software. Assign exercises and projects that require students to actively apply their knowledge and skills in creating 2D sketches and 3D models.
- 2- Demonstrations and Visual Presentations: Use visual presentations and demonstrations to introduce new concepts and features of SOLIDWORKS. Show students step-by-step instructions and examples of how to use different tools and commands within the software.
- 3- Group or Pair Activities: Encourage collaborative learning by assigning group or pair activities. Students can work together on projects, assemblies, or problem-solving tasks, fostering teamwork and peer learning.

- 4- Problem-Based Learning: Present students with real-world design problems or challenges that they can solve using SOLIDWORKS. This approach allows students to apply their knowledge and critical thinking skills to develop practical solutions.
- 5- Case Studies and Examples: Share case studies or real-life examples where SOLIDWORKS has been used in various industries. This helps students understand the practical applications of the software and how it contributes to the design and manufacturing processes.
- 6-Interactive Discussions: Facilitate class discussions or Q&A sessions to encourage active participation and engagement. Encourage students to ask questions, share their experiences, and seek clarification on any concepts or techniques they find challenging.
- 7- Assessments and Feedback: Regularly assess students' progress through assignments, quizzes, or exams that evaluate their understanding and application of SOLIDWORKS. Provide constructive feedback to help students improve their skills and address any misconceptions.

Student \Morkload (SWL)				
Structured SWL (h/sem)	60	Structured SWL (h/w)	4	
Unstructured SWL (h/sem)	65	Unstructured SWL (h/w)	4	
Total SWL (hlsem)		125		

Module Evaluation					
		Time/Number	Weight	Week	Relevant
			(Marks)	Due	Learning
					Outcome
Formative	Quizzes	2	30% (30)	4, 8, 13	LO 1, 2, 3, and 4
assessment					and 4
	Assignments	6	30% (30)	3, 5, 7, 9,	LO 1, 2, 3, and 4
				11, 14	and 4

	Projects lLab,	-	-	-	-
	Report	-	-	-	-
Summative	Midterm	3 hr	40% (40)		
assessment	Exam		, , ,		
	Final Exam	-	-	-	-
Total assessment		100% (100 Marks)			
			Marks)		

	Delivery Plan (Weekly Syllabus)
	Material Covered
Week1	1- Introduction to planes (show and hide).
	2- Introduction to sketch.
	3- Enjoy drawing your first 3D object.
	4- Exercises.
Week2	1- Add dimensions (direct and indirect way).
	2- Draw a rectangle using 4 lines.
	3- Centerline.
	4- Exercises.
Week3	1- Circles.
	2- Relationships.
	3- Simplifying.
	4- Exercises.
Week 4	1- Ways to draw a rectangle.
	2- Ways to draw an arc.
	3- Ways to draw a spline.
	4- Polygon.
	5- Exercises.
Week 5	1- Fillets.
	2- Text.
	3- Exercises.

Week6	1- New Plane.	
	2- Extrude.	
	3- Exercises.	
Week7	Exercises.	
Week8	1- Revolve.	
	2- Sweep.	
Week9	Exercises.	
Week10	1- 3D Fillets.	
	2- 3D Linear Pattern.	
Week11	Exercises.	
Week12	1- 3D Circler Pattern.	
	2- 3D mirror.	
Week13	Exercises.	
Week14	1- Shell.	
	2- Draft.	
	3- Scale.	
Week15	Exercises.	

Learning and Teaching Resources			
	Text	Available in the	
		Library?	
Required Texts	1- "Engineering Design with	No	
	SOLIDWORKS" by David		
	Planchard and Marie Planchard		

Recommended Texts	1- "SOLIDWORKS 2022: A Power	No	
	Guide for Beginners and		
	Intermediate Users" by		
	CADArtifex		
Websites	1- Official SOLIDWORKS Tutoria	ls and Learning	
	Resources: Available on the SOLIDWORKS		
	website, these resources include step-by-step		
	tutorials, videos, and documentation covering various		
	features and workflows.		
	2- MySolidWorks: An online platform that offers a		
	wide range of SOLIDWORKS tutorials, training		
	videos, and resources for users at di	fferent skill levels.	

		Grading Scheme		
Group	Grade	التقدير	Marks (%)	Definition
Success	A - Excellent	امتياز	90 - 100	Outstanding
Group (50 -				Performance
100)	B - Very	جيد جدا	80 - 89	Above
	Good			average with
				some errors
	C - Good	ختخ	70 - 79	Sound work
				with notable
				errors
	D -	متوسط	60 - 69	Fair but with
	Satisfactory			major
				shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets
				minimum
				criteria
Fail Group (0	E - Sufficient	راسب قيد المعالجه	(45-49)	More work
- 49)				required but
				credit awarded
	F - Fail	راسب	(0-44)	Considerable
				amount of
				work required

Note: Marks with decimal places above or below 0.5 will be rounded to the higher or lower (for example a mark of 54.5 will be rounded to 55. whereas a mark of 54.4 will be rounded to 54. The University- has'd policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marler(s) will be the, dutomatic rounding outlined above

Dep. of Production Engineering and Metallurgy

MODULE DESCRIPTION FORM

Computer Science

	Module Information معلومات المادة الدراسية					
Module Title	Con	iputer Science		N	odule Delivery	
Module Type		Basic			☑ Theory	
Module Code		COSC108			□ Lecture ☑ Lab	
ECTS Credits		3			☐ Tutorial	
SWL (hr/sem)		75			□ Practical□ Seminar	
Module Level		1	Semester	er of Delivery 1		1
Administering Do	epartment	Type Dept. Code	College	Type College Code		
Module Leader	Mohanned	Mohammed Hussein	e-mail	Mohanne iq	ed.M.Hussein@u	otechnology.edu.
Module Leader's	Acad. Title	Asst. Prof.	Module L	Module Leader's Qualification PhD		PhD
Module Tutor 1-Dr. Lecturer Muhammed A Mahdi 2- M.Sc. Asst. Prof. Rabab Farhan Abbas			e-mail		med.a.mahdi@uot .F.Abbas@uotec	·
Peer Reviewer Name		Name	e-mail	E-ma	nil	
Scientific Committee Approval Date			Version N	Number	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Mod	lule Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Aims أهداف المادة الدر اسية	Basic concepts of information and communication technology, Basic computer hardware parts, features and operation principles, Windows operating system's features, Word processors, Spreadsheet softwares, Presentation softwares, database usage, internet and using of email and the features.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	Upon successful completion of this module, students should be able to: 1. Explains the basic concepts of information and communication technologies. 2. Defines the basic concepts of computer. 3. Explains the computer system and how it works. 4. Manages the computer using the Windows operating system. 5. Searches for information on a required topic by using the internet 6. Sends and receives email. 7. Formats a text by using word processing software. 8. Uses objects by using word processing software. 9. Uses the basic features of a spreadsheet program and formats the cell structure. 10. Performs calculations and draws the charts by using a spreadsheet program. 11. Uses the basic features of a presentation program. 12. Prepares a presentation with graphics and effects by using a presentation program. 13. Uses the basic features of a database program. 14. Creates the database on a topic by using a database program. 15. Searches for information on a required topic by using the internet 16. Sends and receives email. 17. Prepares a presentation with graphics and effects by using a presentation program.
Indicative Contents المحتويات الإرشادية	The basic concepts of computer technology, The characteristics and operating principles of basic computer hardware parts, Operating system and features, Internet and the benefits, Word processing software and usage, Spreadsheet software and usage, database software and usage, presentation software and usage, e-mail and usage.

Learning and Teaching Strategies	
	استر اتيجيات التعلم والتعليم
Strategies	

Dep. of Production Engineering and Metallurgy

- 1. **Interactive Lectures:** Lectures will form the backbone of the teaching strategy for this module, where fundamental concepts and principles of Computer and Offices applications will be introduced. However, these will not be traditional, one-way lectures; they will be made interactive by including in-class exercises, brief discussions, and concept check quizzes. This approach will foster engagement and facilitate immediate feedback.
- 2. **Practical Lab Sessions:** Lab sessions will be conducted regularly to enhance the practical application of the concepts taught in lectures. These will provide hands-on experience with Computer and Offices applications.
- 3. **Problem-Based Learning:** This strategy involves presenting students with practical problems to foster their critical thinking, problem-solving, and skills. This could include a range of tasks.
- Collaborative Learning: Students will be encouraged to collaborate on lab assignments, fostering a collaborative learning environment. This not only improves problem-solving skills but also enhances interpersonal and communication skills.
- 5. **Flipped Classroom:** Some topics can be taught using a flipped classroom approach, where students are given material (like reading assignments or prerecorded lectures) to review before class. Class time is then used to deepen understanding through discussion and problem-solving activities.
- Self-directed Learning: Outside the classroom, students are expected to engage in self-directed learning, including completing set exercises, preparing for laboratory sessions, further reading, and reflecting on feedback received.
- 7. **Continuous Assessment:** Regular quizzes and assignments will be used to monitor the student's understanding of the module content. Feedback on these tasks will be provided to aid students in their learning journey.

These strategies aim to foster an inclusive, engaging, and effective learning environment, catering to different learning styles while equipping students with theoretical knowledge and practical skills.

Student Workload (SWL)			
الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا			
Structured SWL (h/sem) 48 Structured SWL (h/w) 1 الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب خلال الفصل			
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	27	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	2

Total SWL (h/sem)	125	
الحمل الدر اسي الكلي للطالب خلال الفصل	123	

	Module Evaluation				
	تقييم المادة الدراسية				
		Time/	Weight (Marks)	Week Due	Relevant Learning
		Number	weight (wanks)	Week Duc	Outcome
	Quizzes	2	10% (10)	5, 13	LO #1, 2, 6,7 and 8
Formative	Assignments	2	10% (10)	4, 12	LO # 1,2, 3, 6 and 7
assessment	Projects / Lab.	2	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO #1, 8 and 9
Summative	Midterm Exam	2 hr	10% (10)	11	LO # 1-7
assessment	Final Exam	3hr	50% (50)	16	All
Total asse	ssment		100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)		
	المنهاج الاسبوعي النظري		
	Material Covered		
Week 1	Basic concepts of information and communication technology		
Week 2	Computer Use and File Management		
Week 3	Using the Computer and Managing Files		
Week 4	Word Processing Software 1		
Week 5	Word Processing Software 2		
Week 6	Spreadsheet Software		
Week 7	Spreadsheet Software 2		
Week 8	Presentation Software 1		
Week 9	Presentation Software 2		
Week 10	Internet and Web 1		
Week 11	Mid Exam		

Week 12	Internet and Web 2
Week 13	Database Software
Week 14	Database Software 2
Week 15	Sample Applications

Delivery Plan (Weekly Lab. Syllabus)					
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	Lab 1: - Experiments on dismantling of PC.				
	Lab 2: Experiments on DOS: Perform these commands internal commands.				
Week 2	DIR,TYPE,DEL,ERASE,MD,CD,COPY,RMDIR,VER,DATE,TIME,PAT				
	H, CLS, RMDIR, VER, DATE, TIME, PATH, CLS, BREAK, SET, EXIT.				
Week 3	Lab 3: Experiments on DOS: Perform external commands APPEND, CHKDISK, ATTRIB,				
Week 3	SYS, EDIT.				
Week 4	Lab 4: Experiments on system utilities:- Explore and describe some system utility like regedit				
Week 4	, memory partioning, control panel, window tools				
Week 5	Lab 5: Experiments on system utilities:- List various keys in registry and perform experiments				
week 5	to back up a key in registry using regedit.				
Week 6	Lab 6: Experiments on linux:- Perform an experiment to install any rpm or debianlinux distribution withemphasis on drive partitioning.				
Week 7	Lab 7: Experiments on linux:- Install rpm and deb packages.				
Week 8	Lab 8: Experiments on linux:- Perfom these commands in linux- chmod, su, chown, chgrp, ls,				
week 8	mkdir,pwd,date,who, find, uname, wc, ifconfig.				
Marala O	Lab 9:. Experiments on Office word: Create a office writer document and using tables				
Week 9	distinguish between different types of memories.				
	Lab 10: Experiments on Office word:- Draft a letter asking for quotations of different				
Week 10	peripheral devices for your computer lab and mail the letter using mail merge in open office				
	writer.				

Week 11	Lab 11: Experiments on Office Powerpoint:- Make a simple presentation on your college, use 3D effects, animation on network topologies.
Week 12	Lab 12: Experiments on Office Excel: Create a database of students, which contains marks obtained by students of a class in different subjects and then calculate maximum, minimum, average and sum of marks in each subject. Also calculate % of each student using functions and formulas
Week 13	Lab 13: Experiments on Office Excel: draw Charts, piechart and bar graph
Week 14	Lab 14: Experiments on Web:- Create HTML pages for your business website.
Week 15	Lab 15: Experiments on Web:- Create web pages for your college

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
	Text	Available in the Library?			
Required Texts	 Lee H., "Programming and Engineering Computing with MATLAB 2021", SDC publication, ISBN: 978-1-63057-491-8, Sep.2021,. Chaudhuri A.B., "Flowchart and Algorithm Basics: The Art of Programming", Mercury learning and information, 2020. 	No			
Recommended Texts	Attaway S., " MATLAB: A practical Introduction to Programming and Problem Solving", Department of Mechanical Engineering, Boston University, ELSEVIER, 6 edition,ISBN-13: 978-0323917506, ISBN-10: 032391750X, 2017.	No			
Websites	https://www.mathworks.com/matlabcentral https://www.mathworks.com/support/learn-with-matl	ab-tutorials.html			

Dep. of Production Engineering and Metallurgy

Grading Scheme مخطط الدرجات							
Group Grade التقدير Marks (%) Definition							
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Group	C - Good	ختر	70 - 79	Sound work with notable errors			
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group (0 – 49)	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
	F – Fail	راسب	(0-44)	Considerable amount of work required			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information					
Module Title	Democracy and Human Rights		Module Delivery		
Module Type					• Theory
Module Code		DEHR107			LabLecture
ECTS Credits		2			o Tutorial
SWL (hr/sem)		50			o Practical
S WE (III/Seiii)		50		o Seminar	
Module Lev	vel	1	Semester of Delivery		2
Administering Dep	partment	PEMT	College		ME
Module Leader	Muhan	nmed A Mahdi	e-mail Muhammed.m.mahdi@uoto y.edu.iq		_
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		PhD
Module Tutor			e-mail		
Peer Reviewer Name			e-mail		
Scientilic Committee Approval Date			Versi	on Number	

Relation with other Modules					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents			
Module Aims	Introducing the student to human rights and its relationship to the democratic system and clarifying its characteristics.		
Module Learning Outcomes	Knowledge and Understanding of Historical introduction to democracy. Knowledge and Understanding of The different models of democracy Knowledge and Understanding of Rights and Responsibilities Knowledge and Understanding of civil liberties. Apply quantitative methods for the purpose of explaining and interpreting the idea of rights and democracy. Use Using basic knowledge to examine the historical development of the concept of freedom. Evaluate the information needed to understand different opinions on a common topic.		
Indicative Contents	Scientific and research skills are developed through teaching and learning activities. Analysis and problem-solving skills are further developed by means of a set of problems prepared by the lecturers in small study groups and all work submitted is evaluated and responded to.		

Learning and Teaching Strategies			
Strategies	 Lectures and exercises from textbooks. Use practical application program Creating and solving some small projects through the topics (problem-based education). 		
	4. Dividing students into groups for solving a group of engineering problems (student-based education).		

5.	Using presentation tools during lectures to
	represent the above.

-

6.	Visits to industrial companies to understand the
	work environment.

Student \Morkload (SWL)				
Structured SWL (h/sem)	33	Structured SWL (h/w)	2	
Unstructured SWL (h/sem)	17	Unstructured SWL (h/w)	1	
Total SWL (hlsem)		125		

Module Evaluation					
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative assessment	Quizzes	2	10% (10)	5,10	LO #1, #2 and #10, #11
	Assignments	2	10% (10)	6,12	LO #3, #4 and #6, #7
	Projects /Lab				
	Report				
Summative assessment	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
	Final Exam	3hr	60% (60)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)		
	Material Covered	
Week1	A historical introduction to democracy	
Week2	The different models of democracy	
Week3	Intellectual positions on democracy	
Week4	Intellectual positions on democracy	
Week5	Parliament	
Week6	basic components of democracy	
Week7	Civil society	
Week8	The historical development of human rights	
Week9	Rights and Responsibilities	
Week10	Equality and the law	
Week11	the Constitution	
Week12	Inalienable rights	
Week13	Citizenship concept	
Week14	Majority rule and minority rights	
Week15	Judicial procedures	

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Human rights, children and democracy About the Ministry of Higher Education and Scientific Research	yes		
Recommended Texts		No		
Websites	Websites related to human rights and democracy.			

		Grading Scheme		
Group	Grade	التقدير	Marks (%)	Definition
Success (50)	A - Excellent	امتياز	90-100	
Group (50 - 100)	B - Very Good	جید جدا	80-89	
	C - Good	ختخ	70-79	
	D - Satisfactory	متوسط	60-69	
	E - Sufficient	مقبول	50-59	
Fail Group (0	E - Sufficient	راسب قيد المعالجه		
- 49)	F - Fail	راسب		

Note: Marks with decimal places above or below 0.5 will be rounded to the higher or lower (for example a mark of 54.5 will be rounded to 55. whereas a mark of 54.4 will be rounded to 54. The University- has'd policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marler(s) will be the, dutomatic rounding outlined above

MODULE DESCRIPTION FORM

Module Information						
Module Title		Electrical Engineeri	ng	Mod	Module Delivery	
Module Type		basic	×Theory			
Module Code		ELEN114			o Lecture	
ECTS Credits		6		×Lab		orial
SWL (hr/sem)	150			C		ctical ninar
Module Level		1	Semester	of Delivery 1		1
Administering Department		production and metallurgy engineering	College			
Module Leader	Dr. Moha	nned M. Hussein	e-mail	mohanned.m.hussein@uotechnology.edu.iq		@uotechnol
Module Leader's Acad. Title	Asst. Prof.			Module Leader's Ph.D Qualification		Ph.D
Module Tutor	Dr.A	aqer A. ahmed mmar M.saleh an N. Najm	e-mail	Baqer.A.Ahmed@uotechnology. edu.iq Ammar.M.Saleh@uotechnology. edu.iq vian.n.najm@uotechnology.edu.i q		
Peer Reviewer Name			e-mail			
Scientilic Committee Approval Date			Version N	umber		

Relation with other Modules			
Prerequisite module	None	Semester	
Co- prerequisite module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents		
Wiodaic Timis, Dearming Outcomes and marcative Contents		
Module Objective	This module aims to introduce first-year Production Engineering and Metallurgy students to the fundamental principles and laws of electrical engineering. The course will provide a comprehensive understanding of electrical circuit analysis and different circuit response types. It provides students with a solid foundation in the fundamental principles of electrical engineering. Also, it emphasizes the development of critical thinking, problem-solving, and analytical skills necessary for engineering practice. In addition, it encourages interdisciplinary learning and collaboration to address complex technological challenges. Lastly, it seeks to enhance students' employability by fostering practical experience, teamwork, and effective communication skills.	
Module Learning	Upon successful completion of this module, students	
Outcomes	should be able to:	
	1. Understand and apply the basic principles of	
	electrical quantities and circuits.	
	2. Analyze and solve series and parallel circuits	
	using Delta-Star transformation and equivalent	
	resistance.	

	 Apply Thevenin's theorem, Norton's theorem, and Superposition theorem to simplify and analyze electrical circuits. Apply Kirchhoff's laws in voltage and current analysis. Understand the use of complex numbers in analyzing the response of inductive, capacitive, and RLC circuits. Understand the principle of electromechanical energy conversion. Apply these principles in a lab setting, using measuring instruments to evaluate electrical circuits and systems.
Indicative Contents	 Definition of Basic Electrical Quantities Series/Parallel Circuits and Delta-Star Transformation Determination of Equivalent Resistance Analysis of Electric Circuits Thevenin's Theorem Norton's Theorem Kirchoff's Law in Voltage and Current Superposition Theorem Maximum Power Transfer Complex Numbers in Circuit Analysis Response of Inductive, Capacitive, and RLC Circuits Principle of Electromechanical Energy Conversion

Learning and Teaching Strategies

Strategies The course will combine lecture-based tear practical lab sessions. Students are expect participate actively in class discussions and learned theoretical concepts during the lab	ted to apply the
--	------------------

Student \Morkload (SWL)				
Structured SWL (hisem)	63	Structured SWL (h/w)		
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)		
Total SWL (hr/sem) 150				

Module Evaluation						
		Time/Num ber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	4,8		
Formative	Assignments	2	10% (10)	3,11		
assessment	Projects 1 Lab,	1	10% (10)	Continues		
	Report	1	10% (10)	12		
Summative	Midterm Exam	2 hr	10% (10)	8		
assessment	Final Exam	2 hr	50% (50)	16		
Total assessment			100% (100)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week1	Definition of basic electrical quantities and Ohm's law			
Week2	Power and Energy			
Week3	Series/Parallel Circuits			
Week 4	Delta-Star Transformation and Bridge Networks			
Week 5	Determination of Equivalent Resistance			
Week6	Electrical Circuit Analysis			
Week7	Kirchoff 's voltage and current laws			
Week8	Thevenin's Theorem			
Week9	Norton's Theorem			
Week10	Midterm exam			
Week11	Super-position Theorem			
Week12	Maximum Power Transfer			
Week13	Voltage sources in series and parallel circuits			
Week14	AC Circuit Analysis (Inductive, Capacitive and Resistive circuits)			
Week15	Transformers			
Week16	Final Exam			

Delivery Plan (Weekly Lab. SyUabus)				
Material Covered				
Week 1	Electrical Resistance color standard, and Using measuring devices (ammeter, voltmeter, ohmmeter) to measure resistance			
Week2	Ohm's law, Series and parallel circuits.			
Week 3	Kickoff's current and voltage laws			

Week4	Thevenin's theorem and Norton's Theorem
Week5	Conversion from star to delta and vice versa
Week6	Bridge network
Week7	Superposition Theorem and Maximum Power Transfer

Learning and Teaching Resources					
Text					
		in the			
		Library?			
Required Texts	"A text book of electrical technology",	VAC			
	B.L.Theraja	yes			
Recommended	1. "Principles of Electric Circuits: Conventional				
Texts	Current Version", 9th edition, Thomas L. Floyd.				
	2. "Fundamentals of Electrical Engineering", 1st edition, Leonard S. Bobrow.	no			
	3. "Introduction to Electrical Engineering", Mulukutla S. Sarma.				
Websites					

		Grading Scheme		
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent		90-100	Outstanding Performance
Success Group (50 - 100)	B - Very Good	جيد جدا	80-89	Above average with some errors
	C - Good	नॅंट	70-79	Sound work with notable errors

D -			Fair but with
D	متوسط	60-69	major
Satisfactory			shortcomings
			Work meets
E - Sufficient	مقبول	50-59	minimum
			criteria
			More work
E - Sufficient	راسب قيد المعالجه	45-49	required but
			credit awarded
			Considerable
F - Fail	راسب	0-40	amount of
			work required
Ξ	- Sufficient	متوسط Satisfactory مقبول - Sufficient مقبول - Sufficient - Sufficient راسب قيد المعالجه	Satisfactory متوسط 60-69 - Sufficient مقبول 50-59 - Sufficient راسب قيد المعالجه 45-49

Note: Marks with decimal places above or below 0.5 will be rounded to the higher or lower (for example a mark of 54.5 will be rounded to 55. whereas a mark of 54.4 will be rounded to 54. The University- has'd policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marler(s) will be the, dutomatic rounding outlined above

Dep. of Production Engineering and Metallurgy

MODULE DESCRIPTION FORM Manufacturing Processes I

Module Information معلومات المادة الدراسية							
Module Title	Manuf	facturing Process	es I		Modu	le Delivery	
Module Type		Basic				☑ Theory	
Module Code		MAPR122				⊠ Lecture ⊠ Lab	
ECTS Credits		5				☐ Tutorial ☐ Practical	
SWL (hr/sem)		125				☐ Seminar	
Module Level		1	Semester	r of	Delive	ry	2
Administering D	Type Dept. Code College Code						
Module Leader	Mohanned Mol	nammed Hussein	e-mail		Mohanned.M.Hussein@uotechnology.e		iotechnology.edu
Module Leader's	s Acad. Title	Asst. Prof.	Module Leader's Qualification PhD		PhD		
Module Tutor	1- Asst. Prof. Dr. Saad Karim Shather 2- Asst. Prof. Dr. Aqeel Sabree Bedan 3- Asst. Prof. Dr. Makarim H. Abdulkareem		e-mail	1- Saad.K.Shather@uotechnology.edu.iq 2- Aqeel.S.Bedan@uotechnology.edu.iq makarim.h.abulkareem@uotechnology.e u.iq		hnology.edu.iq	
Peer Reviewer Name Name		e-mail	E-	mail			
Scientific Committee Approval Date Version Number 1.0							

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester			

Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	 Recognize, understand and develop working knowledge of broad range ofmanufacturing processes that are used in the industry. To compare the existing technologies used in casting, shaping, forming, property enhancing, joining and assembly process. To apply the limitations and advantages of different manufacturing processes with an economic point of view to the industry. To learn how component can be manufactured in sustainable manner and learn about the environmental hazards of different manufacturing processes. Provide an understanding of the effect of such techniques on design constraint, microstructure and properties. 				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	1- Describe the manufacturing processes and material behavior as used in engineering practice. 2- Explain how the features and limitations of various manufacturing methods and materials are the key to success in engineering design work. 3- Use engineering drawings to communicate design ideas and make mechanical engineering components. 4- Analysis of a mechanical engineering component to determine the likely methods used in its manufacture and joining. 5- Select an appropriate manufacturing method for a given geometry and material. 6- Demonstrate personal initiative in individual and group work. 7-Understand/appreciate the range of materials, technologies and processes involved in manufacturing 8- Students will demonstrate knowledge of process capabilities of major manufacturing Processes.				

	1-Students will demonstrate the ability to understand the principles of production
	engineering (machines, materials, tools and manufacturing parts) to solve problems in manufacturing.
	2- Students will demonstrate the ability to carry out manufacturing process design
Indicative Contents	based on first principles On material science.
المحتويات الإرشادية	3- This module will introduce the student to the principles of the manufacturing process .
	4- Students will learn the chemical composition of materials and the technology
	processes for manufacturing parts.

Learning and Teaching Strategies				
استر اتيجيات التعلم والتعليم				
Strategies	The strategy of this module must be starting from raw material to final product, using machines, operations with tools which are necessary to product. otherwise manufacturing processes required good knowledge and experience of machine tools and operations.			

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem) Structured SWL (h/w) 4 الحمل الدر اسي المنتظم للطالب أسبوعيا الحمل الدر اسي المنتظم للطالب أسبوعيا 4				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125			

Module Evaluation							
تقييم المادة الدراسية							
	Time/Nu Weight (Marks) Week Due Relevant Learning						
		mber	weight (wanks)	Week bue	Outcome		
	Quizzes	2	10% (10)	3, 13	LO #1, 2, 6,7 and 8		
Formative	Assignments	2	10% (10)	2, 11	LO # 1,2, 3, 6 and 7		
assessment	Projects / Lab.	2	10% (10)	Continuous	All		
	Report	1	10% (10)	13	LO #1 , 9 and 10		
Summative	Midterm Exam	2 hr	10% (10)	10	LO # 1-7		
assessment	Final Exam	3hr	50% (50)	16	All		
Total assessme	ent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)					
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Introduction, classification manufacturing process				
Week 2	Casting methods, sand casting, types of molds. Types of sands				
Week 3	types of patterns, casting defects, Furnaces for Casting Processes				
Week 4	Die casting. Centrifugal casting and investment casting				
	Lost wax casting				
Week 5	Joining and Assembly. Welding, brazing and soldering				
Week 6	Arc welding, Gas metal arc welding, friction welding				
Week 7	Non-conventional welding processes				
Week 8	Plastic deformation, Hot Working, Cold Working				
Week 9	Rolling				
Week 10	Forging, extrusion				
Week 11	wire drawing, deep drawing				
Week 12	Shearing, bending				

Wee	ek 13	Hand and mechanical machining. turning
Wee	ek 14	Milling, grinding, other processes.
Wee	ek 15	Powder Metrology

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	- Sand Particle Size Distribution Measurements				
Week 2	Introduction to the available type of manufacturing process				
Week 3	Measurement of Moisture in Sand molding				
Week 4	Permeability Calculation in sand molding				
Week 5	Permeability Calculation in sand molding				
Week 6	Compatibility Test in sand molding				
Week 7	Compatibility Test in sand molding				
Week 8	Compression Strength testing for Wet and Dry Sand molding				
Week 9	Microstructure Studying of weld zone in Carbon steel				
Week 10	Microstructure Studying of weld zone in Carbon steel				
Week 11	Comparisons of the weld zone in Electric Arc Welding and Gas Welding				
Week 12	Comparisons of the weld zone in Electric Arc Welding and Gas Welding				
Week 13	Hardness measurements for weld zone				
Week 14	Studying the effect of welding parameters on the properties in spot welding				
Week 15	Studying the effect of welding parameters on the properties in spot welding				

Dep. of Production Engineering and Metallurgy

Learning and Teaching Resources مصادر التعلم والتدريس					
Text Library?					
Required Texts	 Mikell P. Groover, [Principles of Modern Manufacturing], 4th edition, John Wiley & Sons, 2011 R.T. Wright, [Processes of Manufacturing], Goodheart-Willcox, 2005 H. N. Gupta, R, C. Gupta and A. Mittal, manufacturing processes, 2009. 	No			
Recommended Texts	1- R. singh, introduction to basic manufacturing processes and workshop technology, 2006.	No			
Websites					

Grading Scheme مخطط الدرجات						
Group	Group Grade التقدير Marks (%) Definition					
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
6 6	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

Module Information						
Module Title		Materials Science I				
Module Type		Core	:		• Theory	
Module Code		MASC1	23		LabLecture	
ECTS Credits		5			o Tutorial	
SWL (hr/sem)		125			O PracticalO Seminar	
Module Level		1	Semester of Delivery		2	
Administering De	partment	PEMT	College		ME	
Module Leader	Ali N	Aezher resen	e-mail	Ali.M.Resen@u	otechnology.edu.iq	
Module Leader's Acad. Title		Asst. Prof.	Module Leader's Qualification		PhD	
Module Tutor		e-mail				
Peer Reviewer Nam			e-mail			
Scientilic Committe Approval Date	e		Versi	on Number		

Relation with other Modules					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents			
Module Aims	 Define and understanding of materials science and materials engineering. Explain the types of materials and classifying depending on types or usage. Define the basic concept of atoms and electron configuration and activity of valence for bonding atoms. The basic subject of Types of Crystals and all parameters concern with characteristic of crystal systems. To develop problem solving skills and understanding of plans, direction, density and atomic packing factors. Define the mechanical properties and developing the skills to solve problems of stress-strain curves, hardness, impacts, and fatigue. Define the imperfections of crystals and its types Explain the microscopic examination and types of its instrument. 		
Module Learning Outcomes	 Knowledge the metals, ceramics, polymer and composite and properties of each branch. Understanding the properties and applications of each type of engineering material. Development skills of determination of types of element bonding and valence. Understanding the types of crystal structure systems and development skill to identification between them. Development skill to calculate the density and atomic number depending on types of materials. Knowledge the mechanical properties such as engineering tress, engineering strain, true stress, true strain, poison ratio, ductility. Understanding and development the skill for hardness calculations, fatigue and impact properties. Understanding the imperfections of crystals point defect such as vacancies and calculation number of its. Define the edge and screw dislocations and method to determination of it. Define the types of microscopes and usage of each type, Understanding the method to determine the particles size. 		

Indicative Contents				
	Collecting and arranging engineering data for various			
	engineering materials. Solve it and analyze the results of the electrical properties of various metallic elements and bonding. (15 Hrs.) Study unit cell, lattice, lattice parameters, directions linear density (15 Hrs.)			
	Repeat distance, Packing fraction of directions, plans, planar			
	density, HCP. (15 Hrs.)			
	Engineering tress, engineering strain, true stress, true strain, poison ratio, ductility. (12 Hrs.)			
	Hardness, fatigue and impact properties. (12 Hrs.)			
	Vacancies, edge dislocations, screw dislocations (12 Hrs.)			
	Light microscope, scanning electron microscope, transmition			
	electron microscope, ASTM grain size number and number			
	of grains per square inch (8 Hrs.)			

Learning and Teaching Strategies			
Strategies	 Lectures and exercises from textbooks. Use practical application program Creating and solving some small projects through the topics (problem-based education). Dividing students into groups for solving a group of engineering problems (student-based education). Using presentation tools during lectures to represent the above. Visits to industrial companies to understand the work environment. 		

Student \Morkload (SWL)					
Structured SWL (h/sem) 63 Structured SWL 4					
Unstructured SWL (h/sem)	62 Unstructured SWL (h/w) 4				
Total SWL (hlsem)	(hlsem) 125				

Module Evaluation					
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative assessment	Quizzes	2	10% (10)	5,10	LO #1, #2 and #10, #11
	Assignments	2	10% (10)	6,12	LO #3, #4 and #6, #7
	Projects /Lab	1	10% (10)	Continuous	All
	Report				
Summative assessment	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
	Final Exam	3hr	60% (60)	16	All
	Total assessment				

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week1	Introduction,			
	Materials science and Materials engineering			
	Types of Engineering Materials and its properties			
Week2	The structure of the Atom,			
	The Electronic configuration of the Atom and valance			
	The Periodic table			
Week3	Types of Atomic Bonding and its properties			
	Metallic bonding, Covalent bonding			
	Ionic bonding, Vander Waals bonding			
Week4	Types of Crystals, Unit cells			
	no order, short range order, long range order			
	unit cell, Lattice, Crystal structure, Number of atoms per unit cell			
Week5	Atomic radius vs lattice parameters			
	Coordination No., Atomic Packing factor			
	Density, Allotropic Transformation			
Week6	Points, Directions in the Unit Cell			
	Miller indices, Linear density			
	Repeat distance, Packing fraction of directions			

Week7	Midterm Exam		
Week8	Planes in the Unit Cell		
.,, 55116	Miller indices, planar density		
	Repeat distance, Packing fraction of plans		
Week9	Miller indices for HCP, 3D to 4D conversion		
	Isotropic and anisotropic, sodium chlorine structure		
	Interatomic Spacing, diffraction technique for crystal structure analysis		
Week10	Mechanical properties of materials		
	Terminology for Mechanical Properties, tensile test		
	stress- strain curve and its types,		
	engineering stress and strain, strength		
Week11	Yield strength, Tensile strength,		
	Elastic and plastic properties		
	Stiffness, Poisson ratio		
	Modules of resilience		
Week12	True stress and strain, Ductility,		
	Effect of temperature on mechanical properties		
	Hardness of materials, Types of hardness		
Week13	Impact test technique		
	Ductile to brittle transition temperature (DBTT)		
	Fatigue and its types		
Week14	Imperfections of crystals and its types		
	vacancies and self-interstitials		
	impurities in solids, dislocations-linear defects		
	interfacial defects		
Week15	microscopic examination, optical microscopy, electron microscopy		
	transmission electron microscopy, scanning electron microscopy, grain size		
	determination		
Week16	Final exam		

Delivery Plan (Weekly Lab. SyUabus)			
	Material Covered		
Week1	Types of Microscopes		
Week2	Specimen preparation for Microstructure Examination		
Week 3	Crystal structure of Metals		
Week4	Solidification of Ingots		
Week5	Ingots Defects		

Week6	Methods of Hardness Measurement
Week7	Cooling Curves

Learning and Teaching Resources					
Text Available in the Librar					
Required Texts	Fundamentals of Materials Science and Engineering, William D. Callister & David G.Rethwisch	yes			
Recommended Texts	The Science and Engineering of Materials, Donald R. Askeland,	No			
Websites					

Grading Scheme					
Group	Grade	التقدير	Marks (%)	Definition	
Success	A - Excellent	امتياز	90-100		
Group (50 - 100)	B - Very Good	جید جدا	80-89		
	C - Good	ختر	70-79		
	D - Satisfactory	متوسط	60-69		
	E - Sufficient	مقبول	50-59		
Fail Group (0	E - Sufficient	راسب قيد المعالجه	_		
- 49)	F - Fail	راسب			

Note: Marks with decimal places above or below 0.5 will be rounded to the higher or lower (for example a mark of 54.5 will be rounded to 55. whereas a mark of 54.4 will be rounded to 54. The University- has'd policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marler(s) will be the,dutomatic rounding outlined above

Ministry of Higher Education and Scientific Research - Iraq University of Technology Department of Production Engineering and Metallurgy

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title	Mathematics		Module Delivery	у		
Module Type				⊠ Theor	•	
Module Code				☑ Lectu ☐ Lab	☐ Lecture☐ Lab	
ECTS Credits			✓ Tutorial✓ Practical			
SWL (hr/sem)				☐ Seminar		
Module Level	le Level 1		Semester of Delivery 1		1	
Administering Dep	Administering Department Coll		College			
Module Leader	Mohanad Qus	ay Abbood	e-mail	mohanad.q.abbood	@uotechnology.edu.iq	
Module Leader's	Acad. Title	Lecturer	Module Lea	der's Qualification	Ph.D.	
Module Tutor			e-mail			
Peer Reviewer Na	eer Reviewer Name		e-mail			
Scientific Committee Date	tee Approval	27/06/2023	Version Nur	nber		

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Aims أهداف المادة الدر اسية	In this course, the student will be learning the basic concepts of calculus (differentiation and integration) and the skills and method of doing (differentiation and integration), this course also includes some applications, especially engineering applications.				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	On completion of the module the student is expected to be able to: LO1 Explain the rule of differentiation. LO2 use the derivative in optimization problems LO3 the integration and the methods of integrations with its applications.				
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Functions [12 hrs.] Differentiation [12 hrs.] Applications of Differentiation [18 hrs.] Integration [6 hrs.] Applications of definite integrals [12 hrs.] Techniques of Integration [18 hrs.]				

Course Description				
Course Description	This is a two-course sequence in the differential and integral calculus of functions of one independent variable. Topics include the basic analytic geometry of graphs of functions, integrals and derivatives, including the Fundamental Theorem of Calculus. Also, some applications of the integral, like volumes of solids with rotational symmetry, are discussed. Applications to the physical sciences and engineering will be a focus of this course, as this sequence of courses is designed to meet the needs of students in these disciplines.			

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of assignments involving some problem solving that are interesting to the students.			

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا					
Structured SWL (h/sem) 90 Structured SWL (h/w) 6 الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب خلال الفصل 6					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	60	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	160				

Module Evaluation تقييم المادة الدراسية							
	Time/Nu Weight (Marks) Week Due Outcome						
Formative	Quizzes	2	5 % (5)	5 and 11	LO # 1, #2, #3, #4 and #9, #10		
assessment	Assignments	2	5 % (5)	4 and 12	LO # 3 and #10, #11		
Summative	Midterm Exam	2 hrs.	20 % (20)	8	LO # 1- #7		
assessment Final Exam 3 hrs.		70 % (70)	16	All			
Total assessme	ent		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Functions (Graph, combining functions, Shifting, Scaling, Reflecting, odd & even function)				
Week 2	Functions (Trigonometric functions, Exponential functions, Inverse function and logarithms)				
Week 3	Differentiation (Definition of the derivative, differentiation rules, derivatives of common functions, chain rule and implicit differentiation)				
Week 4	Derivatives of trigonometric, exponentials, logarithms, and Inverse functions.				
Week 5	Applications of Differentiation (related rate)				
Week 6	Applications of Differentiation (applied optimization)				
Week 7	Applications of Differentiation (moments and centers of mass)				

Week 8	Mid. Review and Mid. Term exam
Week 9	Integration (indefinite integral and definite integrals)
Week 10	Applications of definite integrals (Area)
Week 11	Applications of definite integrals (Volume by cross section area)
Week 12	Techniques of Integration (Integration by Parts and Trigonometric Integrals)
Week 13	Techniques of Integration (Trigonometric Substitutions)
Week 14	Techniques of Integration (Integration of Rational Functions by Partial Fractions)
Week 15	Laplace transform
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources مصادر التعلم والتدريس						
	Text Library?					
Required Texts	Thomas Calculus, GEORGE B. THOMAS, JR. 14 edition	Yes				
Required Texts	Engineering Mathematics, John Bird	Yes				
Websites						

Grading Scheme مخطط الدر جات					
Group					
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C – Good	ختر	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49) F – Fail		راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Ministry of Higher Education and Scientific Research - Iraq University of Technology Department of Production Engineering and Metallurgy

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title	Engi	ineering Mechar	nics	Modu	ıle Delivery	
Module Type		С			☑ Theory	
Module Code		ENME121			☐ Lab ☐ Tutorial ☐ Practical	
ECTS Credits		7.00				
SWL (hr/sem)	175			☐ Seminar		
Module Level		1	Semester o	of Delivery		2
Administering Dep	partment		College			
Module Leader	Qussay Salah I	Mahdi	e-mail	qussay.s	.mahdi@uotechno	ology.edu.iq
Module Leader's	Acad. Title	Lecturer	Module Lea	ıder's Qı	ualification	Ph.D.
Module Tutor	·		e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date		27/06/2023	Version Nu	mber		

Relation with other Modules					
	العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents						
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية						
Module Aims أهداف المادة الدر اسية	In this course, the student will be learn the basic concepts of forces, resultant force, Equilibrium, Centered- center of mass, friction and moments that affect the static and dynamic body in two dimensions and three dimensions including their applications especially engineering applications.					
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	On completion of the module the student is expected to be able to: LO1 Resolving any force to its components in X, Y and Z- direction. LO2 Unification of any force system into a resultant force. LO3 Evaluation of equilibrium state of the rigid body. LO4 Evaluation of the centroid of the bodies. LO5 Evaluation of the friction forces acting the bodies.					
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Static Bodies [18 hrs.] Resultant Force [18 hrs.] Equilibrium [18 hrs.] Centroid [6 hrs.] Moment [18 hrs.] Friction [12 hrs.] Force, mass, acceleration [18 hrs.] Force, energy and power [18 hrs.] Impulse and momentum [18 hrs.]					

Course Description					
Course Description	This is a one-course in the forces, resultant forces, moments, equilibrium, friction, energy, power and impulse that affects statics and dynamics of bodies. This capacity requires more than a mere knowledge of the physical and mathematical principles of mechanics; also required is the ability to visualize physical configurations in terms of real materials, actual constraints, and the practical limitations which govern the behavior of machines and structures. There is a frequent tendency in the presentation of mechanics to use problems mainly as a vehicle to illustrate theory rather than to develop theory for the purpose of solving problems.				

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises and homework's, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of assignments involving some problem solving that are interesting to the students.			

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا			
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	90	Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا	6
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	60	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	160		

Module Evaluation تقييم المادة الدراسية					
	Time/Nu Weight (Marks) Week Due Outcome				
Formative	Quizzes	2	5 % (5)	5 and 11	LO # 1, #2, #3, #4 and #9, #10
assessment	Assignments	2	5 % (5)	4 and 12	LO # 3 and #10, #11
Summative	Midterm Exam	2 hrs.	20 % (20)	8	LO # 1- #7
assessment	Final Exam	3 hrs.	70 % (70)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Syllabus)			
	المنهاج الاسبوعي النظري		
	Material Covered		
Wee	Week 1 Introduction to mechanics of bodies		

Week 2	Static bodies	
Week 3	Resolving of system of forces	
Week 4	Resultant of force	
Week 5	Equilibrium	
Week 6	Centered- center of mass	
Week 7	Moment of inertia	
Week 8	polar moment of inertia	
Week 9	Distributed force- friction	
Week 10	Moving bodies	
Week 11	Absolute motion	
Week 12	Force, mass, acceleration	
Week 13	Force, energy and power	
Week 14	Impulse and momentum	
Week 15	Preparatory week before the final Exam	

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	Engineering Mechanics Volume 1 Statics Seventh Edition, J. L. Meriam L. G. Kraige	Yes		
Required Texts	DYNAMICS TWELFTH EDITION R. C. HIBBELER	Yes		
Websites				

Grading Scheme مخطط الدرجات				
Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors
	C – Good	ختر	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 59.5 will be rounded to 60, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title		n Cugua	Modu	ıle Delivery		
Module Type Module Code ECTS Credits				✓ □ Theory □ Lecture □ Lab □ Tutorial		
SWL (hr/sem)			☐ Practical ☐ Seminar			
Module Level		UGI	Semester of Delive		у	1
Administering Department		Department of Production Engineering and Metallurgy	College	Metallurgy Engineering		
Module Leader	Maryam Abdu	l-adheem Ali Bash	e-mail	Maryam.a.alibash@uotechnology.ed		echnology.edu.iq
Module Leader's Acad. Title		Assistant Professor	Module Lea	Module Leader's Qualification Ph.D.		Ph.D.
Module Tutor		e-mail				
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date			Version Nu	mber		

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Objectives أهداف المادة الدراسية	 a deep understanding of their subjects higher order thinking skills - analysis, critical thinking, problem-solving presenting ordered and coherent arguments. independent learning and research. 				
	 understand that all physical quantities consist of a numerical magnitude and a unit. recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), and temperature (K). understand the difference between scalar and vector quantities and give examples of scalar and vector define and use distance, displacement, speed, velocity, and acceleration. use graphical methods to represent distance, displacement, speed, velocity, and acceleration. 				
Module Learning Outcomes	 6. derive, from the definitions of velocity and acceleration, equations that represent uniformly accelerated motion in a straight line. 7. solve problems using equations that represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without air resistance. 				
مخرجات التعلم للمادة الدراسية	 describe an experiment to determine the acceleration of free fall using a falling object. understand that mass is the property of an object that resists change in motion recall F = ma and solve problems using it, understanding that acceleration and resultant force are always in the same direction. define and use force as the rate of change of momentum state and apply each of Newton's laws of motion. describe and use the concept of weight as the effect of a gravitational field on a mass and recall that the weight of an object is equal to the product of its mass and the acceleration of free fall. 				
	14. Describe other examples of forces such as: Normal and Tension forces. 15. Solving further examples on Newton's Laws of motion. Indicative content includes the following.				
Indicative Contents المحتويات الإرشادية	1- Physical quantities and units Physical quantities, SI units, base quantities and their units, derived quantities and units, prefixes and their symbols, the distinction between precision and accuracy, scalar and vector quantities. 2- Kinematics				

One-dimensional Kinematics: distance, displacement, speed, velocity, and acceleration definition, graphical methods to represent distance, displacement, speed, velocity, and acceleration, and Equations of motion at a constant acceleration.

Two- dimensional Kinematics: Vector Addition and Subtraction (Graphical and Analytical method), Projectile motion.

3- Dynamics

Force and mass definition, Types of Forces, Newton's laws of motion, weight, Normal and Tension forces, Other types of forces such as: Friction and drag force.

	Learning and Teaching Strategies استراتيجيات التعلم والتعليم
Strategies	Physics learning involves doing things, exploring ideas, making connections, examining assumptions, and making things. It is the student's mind that should be active. Understanding: Ability to explain something to oneself and/or to others – Emphasis on internal effect. This will be achieved through Telling stories about the topic makes the connection between people and ideas. It can also help build trust between teachers and students. Students pay more attention and show more interest in stories. So, stories can make topics easier for students to understand.

Student Workload (SWL)				
الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem)	48	Structured SWL (h/w)	3	
الحمل الدراسي المنتظم للطالب خلال الفصل	40	الحمل الدراسي المنتظم للطالب أسبوعيا		
Unstructured SWL (h/sem)	77	Unstructured SWL (h/w)	Г	
الحمل الدراسي غير المنتظم للطالب خلال الفصل	//	الحمل الدراسي غير المنتظم للطالب أسبوعيا	5	
Total SWL (h/sem)				
الحمل الدراسي الكلي للطالب خلال الفصل	125			

	Module Evaluation						
	تقييم المادة الدراسية						
		Time/Number	Weight (Marks)	Week Due	Relevant Learning		
		Time/Number	vveigitt (iviaiks)	Week Due	Outcome		
	Quizzes	2	10	3 and 10			
Formative	Assignments	2	10	5 and 12			
assessment	Projects / Lab.						
	Report	1	10	13			

Summative	Midterm Exam	2hr/ 1	20	7	
assessment	Final Exam	3hr/2	50	16	
Total assessment			100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)		
	المنهاج الاسبوعي النظري		
	Material Covered		
Week 1	Physics: An Introduction, Physical Quantities, and Units.		
Week 2	SI Units: Fundamental and Derived Units.		
Week 3	Fundamentals of Linear Motion (scalar and vector quantities)		
Week 4	Displacement, Time, Velocity, Speed, and Acceleration.		
Week 5	Equations of (Constant Acceleration) Motion		
Week 6	Types of Graphical Representation of Motion		
Week 7	Midterm Exam.		
Week 8	Falling Objects		
Week 9	Motion in a Plane Introduction to Two-Dimensional Kinematics		
Week 10	Vector Addition and Subtraction: Graphical Method Vector Addition and Subtraction: Analytical Method		
Week 11	Projectile Motion + Examples		
Week 12	Introduction to Dynamics: Types of Forces.		
Week 13	Newton's Laws of Motion		
Week 14	Examples of Newton's laws		
Week 15	Normal, Tension, and Other Examples of Forces		
Week 16	Final Exam		

Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر			
	Material Covered			
Week 1				
Week 2				
Week 3				
Week 4				

Week 5	
Week 6	
Week 7	

Learning and Teaching Resources			
	مصادر التعلم والتدريس	<u> </u>	
	Text Available in the Library?		
Required Texts Non			
Recommended	College Physics, PAUL PETER URONE and	Voc	
Texts	ROGER HINRICHS, 2020 Rice University	Yes	
Websites visit https://openstax.org.			

Grading Scheme مخطط الدرجات				
Group	Grade	التقدير	Marks %	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
6 6	B - Very Good	جيد جدا	80 - 89	Above average with some errors
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Dep. of Production Engineering and Metallurgy

MODULE DESCRIPTION FORM

Programming I

Module Information معلومات المادة الدراسية						
Module Title	Pr	ogramming I		N	Module Delivery	
Module Type		Core			☑ Theory ☐ Lecture ☑ Lab	
Module Code		COPRO112				
ECTS Credits		4			☐ Tutorial	
SWL (hr/sem)		100			□ Practical□ Seminar	
Module Level		1	Semester of Delivery 1		1	
Administering Do	epartment	Type Dept. Code	College	lege Type College Code		
Module Leader	Mohanned	Mohammed Hussein	e-mail Mohanned.M.Hussein@uotechnology		otechnology.edu.	
Module Leader's	Acad. Title	Asst. Prof.	Module L	Nodule Leader's Qualification PhD		PhD
		li Mohammed Jassem rof. Rabab Farhan	e-mail 1- Ali.M.Jassem@uotechnology.edu.id 2- Rabab.F.Abbas@uotechnology.edu			
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date			Version N	lumber	1.0	

Relation with other Modules				
	العلاقة مع المواد الدراسية الأخرى			
Prerequisite module None		Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
	This module aims to introduce students to MATLAB as a programming language,			
	providing a robust foundation in MATLAB's functionality and addressing the practical			
	implementation of problem-solving algorithms.			
	The course, intended for students with no programming experience, provides			
	the foundations of programming in MATLAB®. Students will learn essential			
Module Aims أهداف المادة الدر اسية	programming variables, arrays, conditional statements, loops, functions, constructs,			
اهداف المادة الدر اللية	data analysis, visualization techniques using plots are explained, and the application			
	of MATLAB for numerical computations. At the end of the course, students should be			
	able to use MATLAB in their work and be prepared to deepen their MATLAB			
	programming skills and tackle other languages for computing, such as Java, C++,			
	or Python.			
	Upon successful completion of this module, students should be able to: 1. Knowing the components of a computer system and the functions of each part,			
	hardware, and software components, and their importance in the work of the computer, also building Algorithms, Flowcharts, and their importance in			
	writing codes for any mathematical or industrial problems.			
Module Learning Outcomes	 Understand the basics of MATLAB as a programming language. Knowing the MATLAB environment, also undertake format numbers. 			
Outcomes	3. Knowing the MATLAB environment, also undertake format numbers, variables, and Priority in Operations Mathematics.			
مخرجات التعلم للمادة	4. Construct and perform arithmetic and logical operations on scalars and			
مخرجات التعلم للمادة الدر اسية	matrices and execute special commands for vectors and matrices.			
	5. Create, run, and debug MATLAB scripts and functions.6. Implement basic algorithms and data structures using MATLAB.			
	7. The students can build programs to solve many problems by merging the			
	above outcomes.			
	8. Utilize MATLAB's in-built functions and toolboxes for numerical computation.			
	 Visualize data effectively using MATLAB plotting techniques. Computer Hardware and Algorithm: Getting a brief introduction to computer 			
	hardware and understanding the principle of computer algorithms. Also, the			
Indicative Contents	flowcharts symbolize and construction. (4 hours lecture, 2 hours lab)			
المحتويات الإرشادية	2. Introduction to MATLAB: Understanding the MATLAB environment, variables,			
	operators, and data types. (4 hours lecture, 2 hours lab))			

Dep. of Production Engineering and Metallurgy

- 3. **MATLAB Programming Basics:** Scripts, functions, control structures (if-else statements, loops), and error handling. (6 hours lecture, 6 hours lab)
- 4. **MATLAB Data Structures:** Vectors, matrices, and cell arrays. (6 hours lecture, 6 hours lab).
- 5. **File Input/Output in MATLAB:** Importing and exporting data. (4 hours lecture, 2 hours lab)
- 6. **Basic Data Analysis and Visualization:** Statistical analysis, curve fitting, and plotting. (4 hours lecture, 4 hours lab)

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Interactive Lectures: Lectures will form the backbone of the teaching strategy for this module, where fundamental concepts and principles of MATLAB programming will be introduced. However, these will not be traditional, oneway lectures; they will be made interactive by including in-class exercises, brief discussions, and concept check quizzes. This approach will foster engagement and facilitate immediate feedback.

- 2. **Practical Lab Sessions:** Lab sessions will be conducted regularly to enhance the practical application of the concepts taught in lectures. These will provide hands-on experience with MATLAB. The students will be tasked with solving real-world problems, emphasizing the practical relevance of their learning.
- 3. Problem-Based Learning: This strategy involves presenting students with practical problems to foster their critical thinking, problem-solving, and programming skills. This could include a range of tasks, from simple debugging exercises to more complex problems that require the application of various programming concepts.
- 4. **Collaborative Learning:** Students will be encouraged to collaborate on lab assignments, fostering a collaborative learning environment. This not only improves problem-solving skills but also enhances interpersonal and communication skills.
- 5. **Flipped Classroom:** Some topics can be taught using a flipped classroom approach, where students are given material (like reading assignments or prerecorded lectures) to review before class. Class time is then used to deepen understanding through discussion and problem-solving activities.
- Self-directed Learning: Outside the classroom, students are expected to engage in self-directed learning, including completing set exercises, preparing for laboratory sessions, further reading, and reflecting on feedback received.

Strategies

Dep. of Production Engineering and Metallurgy

7. **Continuous Assessment:** Regular quizzes and assignments will be used to monitor the student's understanding of the module content. Feedback on these tasks will be provided to aid students in their learning journey.

These strategies aim to foster an inclusive, engaging, and effective learning environment, catering to different learning styles while equipping students with theoretical knowledge and practical skills.

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا					
Structured SWL (h/sem) Structured SWL (h/w) 4 الحمل الدر اسي المنتظم للطالب أسبوعيا الحمل الدر اسي المنتظم للطالب خلال الفصل					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125				

Module Evaluation							
	تقييم المادة الدراسية						
	Time/ Weight (Marks) Week Due Relevant Learning						
	,	Number			Outcome		
	Quizzes	2	10% (10)	5, 13	LO #1, 2, 6,7 and 8		
Formative	Assignments	2	10% (10)	4, 12	LO # 1,2, 3, 6 and 7		
assessment	Projects / Lab.	2	10% (10)	Continuous	All		
	Report	1	10% (10)	13	LO #1, 8 and 9		
Summative	Midterm Exam	2 hr	10% (10)	11	LO # 1-7		
assessment	Final Exam	3hr	50% (50)	16	All		
Total asse	Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)				
المنهاج الاسبوعي النظري				
	Material Covered			
Week 1	Introduction to Algorithms fundamentals.			
Week 2	Introduction to flowcharts and MATLAB environment; (Format numbers, Variables and Priority in Operations Mathematics).			
Week 3	Construction and handling vectors, matrices, and cell arrays using MATLAB environment using different methods and special commands.			
Week 4	Arithmetic operators and some MATLAB built-in functions.			
Week 5	Execute Special commands for vectors and matrices.			
Week 6	Programming using Scripts and Function files with examples,			
Week 7	File input/output with examples.			
Week 8	Relational and Logical operations.			
Week 9	Conditional statements			
Week 10	Loops and examples			
Week 11	Mid Exam			
Week 12	Examples of using conditional statements, looping, and Logical operations.			
Week 13	Two-dimensional plotting			
Week 14	Three-dimensional plotting			
Week 15	Overview with examples			

Delivery Plan (Weekly Lab. Syllabus)				
المنهاج الاسبوعي للمختبر				
	Material Covered			
Week 1	Lab 1: - See the computer parts and explain the function of each part.			
- Dealing with Algorithms and homework.				
Week 2	Lab 2: - Dealing with flow charts			

Ministry of Higher Education and Scientific Research

University of Technology

	- Learn to install MATLAB program, Install MATLAB mobile, dealing with			
	MATLAB Cloud.			
	- Explanatory introduction on how to use MATLAB program, MATLAB windows,			
	Variables definition, perform different arithmetic operations, use Coma and			
	Semicolon, homework.			
Week 3	Lab 3: Practical exercises on Vectors and Matrices within MATLAB environment using			
week 3	different methods and special commands, homework.			
Week 4	Lab 4: Practical exercises on executing arithmetic for vectors and matrices. Also, using some			
Week 4	built-in functions and homework.			
Week 5	Lab 5: Application of Special commands for vectors and matrices, homework.			
Week 6	Lab 6: Application of programming using script and function files, homework.			
Week 7	Lab 7: file input/output practicing.			
Week 8	Lab 8: Perform and application of conditional statements with different types and programs			
week 8	homework.			
Week 9	Lab 9: Perform and application of looping statements with different types and programs,			
Week 3	homework.			
Week 10	Lab 10: Mid-laboratory exam.			
Week 11	Lab 11: Programming and application of Logical and comparison operations, homework.			
Week 12	Lab 12: Programming different examples of conditional statements, looping, Logical operations,			
Week 12	and homework.			
	Lab 13: Plot different mathematical and trigonometric functions (two-dimensional			
Week 13	plotting). - Draw more than one curve in the same drawing.			
	- Drawing more than one diagram in a single format-using subplots (m, n, p).			
Week 14	- homework.			
	Lab 14: Three-dimensional plotting (3D plot, surface, and Mesh-grid), homework.			
Week 15	Lab 15: different programs overview applications.			

Dep. of Production Engineering and Metallurgy

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
	Text	Available in the Library?			
Required Texts	 Lee H., "Programming and Engineering Computing with MATLAB 2021", SDC publication, ISBN: 978-1-63057-491-8, Sep.2021,. Chaudhuri A.B., "Flowchart and Algorithm Basics: The Art of Programming", Mercury learning and information, 2020. 	No			
Recommended Texts	Attaway S., " MATLAB: A practical Introduction to Programming and Problem Solving", Department of Mechanical Engineering, Boston University, ELSEVIER, 6 edition,ISBN-13: 978-0323917506, ISBN-10: 032391750X, 2017.	No			
Websites	https://www.mathworks.com/matlabcentral https://www.mathworks.com/support/learn-with-matla	ab-tutorials.html			

Grading Scheme مخطط الدرجات							
Group	Group Grade التقدير Marks (%) Definition						
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success	B - Very Good	جید جدا	80 - 89	Above average with some errors			
Group	C - Good	ختر	70 - 79	Sound work with notable errors			
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

First and Second Semester

Module 1

Module Information							
Module Title	Workshops		Module Delivery				
Module Type	Su	pport	☐ Theory				
Module Code	WO	RSH11	Lecture				
ECTS	4		☐ Lab				
Credit/year			☐ Tutorial				
SWL/year		100	Practical				
			☐ Seminar				
Module level	1	Semester of Delivery	1, 2				
Module Leader	Training and	College					
	Workshops Center						
Module Leader	Prof.	e-mail	twc@uotechnology.edu.iq				
Academic Title							
Module Tutor	TE-UOT-	Module Leader's	Ph.D.				
	027131111-15	Qualification					
Peer Reviewer Name		e-mail					
Scientific Committee	1/6/2023	e-mail					
Approval Date							
		Version Number	1				

Relation with other Modules					
Prerequisite Module - Semester -					
Co-requisite Module - Semester -					

Module Aims, Learning Outcomes and Inductive Contents				
Module Aims	1-Preparing applied engineers in the field of engineering sciences who			
	are distinguished by a high level of knowledge and technological			
	creativity, in line with the strict standards adopted globally in quality			
	assurance and academic accreditation of the corresponding engineering			
	programs, while adhering to the ethics of the engineering profession.			
	2. Enable the student to know and understand work systems, risks, and the			
	factors surrounding them.			
	3. Enable the student to know and understand theoretical principles in			
	handicrafts and measurements.			
Module Learning	1- To familiarize the student with the vocabulary of occupational safety and its			
Outcomes	importance in the field of work.			
	2- Acquisition of the student's manual operation skills, for example (Filings and			

Tinsmith workshops), and mechanical operation skills, for example (Turning). 3- Acquisition of the student's mechanical forming skills, for example (Casting and Blacksmithing). 4- The student acquires basic engineering skills such as Welding, Carpentry, and Electrical installations that serve him in the professional field. 5- Enabling the student to operate the various machines and devices in mechanical operations and formation. 6- Cooperative learning by working collectively. **Inductive Contents** 1. Introducing the student to the basics of the art of turning and milling, types of cold working machines, the skill of dealing with them, choosing metals, operational tools, and methods of measurement and standardization 2. Introducing the student to the basics of the art of casting, hot forming, metal selection, method of working on casting furnaces and tools, and manufacturing casting molds 3. Familiarize students with the basics of cars and the systems they use, as well as maintenance, disassembly, and assembly processes. Introducing students to the basics of household and industrial electrical appliances, the skill of using tools, and designing electrical circuits and control panels 5. Introducing the student to the basics of the art of plumbing, leveling surfaces, the skill of using tools, manufacturing and installing geometric shapes, and methods of measurement and standardization 6. Introducing the student to the basics of the art of blacksmithing, cold and hot forming of metals, the method of hardening them, and the skills of dealing with hand tools, forming machines, and heating furnaces 7. Introducing the student to the basics of the art of filing and manual operation of metals with the help of manual, electrical, and mechanical tools, the skills of dealing with them, and the methods of measurement and standardization 8. Introducing the student to the basics of the art of welding, the installation and assembly of metals, the types of welding machines, the skills of dealing with them, the types of welding, and the methods of measurement and standardization Introducing the student to the basics of the art of carpentry and woodworking with the help of manual, electrical, and mechanical tools, the skills of dealing with them, and methods of measurement and standardization

Learning and Teaching Strategies			
Strategies			

Student Workload (SWL)				
Structured SWL (h/sem) 46.5 Structured SWL (h/w) 3.00				
Unstructured SWL (h/sem)	3.5	Unstructured SWL (h/w)	0.23	
Total SWL (h/sem) 50				
Structured SWL (h/year)	93	Structured SWL (h/w)	3.00	
Unstructured SWL (h/year) 7 Unstructured SWL (h/w) 0.23			0.23	
Total SWL (h/year)	100			

		Module E	Evaluation		
		Time/No.	Weight	Week Due	Relevant
			(Marks)		Learning
					Outcome
Formative	Quizzes				
Assessment	Assignments				All
	Projects /	Every 3 weeks	60%	Continuous	
	Practice				
	Report				
Summative	Midterm				
Assessment	Exam				
	Exam	Every 3 weeks	40%	Continuous	All
Total assessment		100%			

	Delivery Plan (Weekly Syllabus)
	Materials Covered
Week 1	Welding workshop.
	-Occupational safety and its importance in welding workshops.
	-Introduction to the basics of welding.
	-Electric arc exercise.
	-An exercise for welding straight lines in a circular motion (helical).
Week 2	Welding workshop
	- An exercise for welding straight lines with a crescent movement and other welding methods
	-Construction welding exercise.
Week 3	Welding workshop.
	-Welding two pieces together.
	Written exam in practical exercises.
Week 4	Casting workshop
	-Occupational safety and its importance in plumbing workshops.

	-Introduction to the basics of metal casting.		
	-Simple wooden disc exercise.		
	Half workout.		
Week 5	Casting workshop		
	Wheel exercise.		
	Pushing arm exercise.		
Week 6	Casting workshop.		
	-Complete pulley exercise.		
	-Circular pole exercise.		
	-Written exam in practical exercises.		
Week 7	Blacksmith Workshop		
	-Occupational safety and its importance in blacksmithing workshops.		
	-Introduction to the Basics of Blacksmithing.		
	- Barbell adjustment exercise.		
	-Eight-star exercise.		
	- Exercise forming the number eight in English.		
	-Six formation exercises in English.		
Week 8	Blacksmith Workshop		
	-An exercise forming the number five in English.		
	- Exercise forming the number nine in English.		
	An exercise in forming an iron model in the form of a circle		
Week 9	Blacksmith Workshop		
	- S-shape exercise.		
	- Air hammer hot barbell exercise.		
	- Exercise to form a circle on an electric bending machine.		
	- Exercising cold and hot ornament formation.		
	A written exam in practical exercises		
Week 10	Automotive Workshop		
	-Occupational safety and its importance in car maintenance workshops.		
	-An introduction to cars and their basic parts.		
	-Parts of the engine, how it works, types of engines, and methods of		
	classification.		
Week 11	Automotive Workshop		
	- Open the engine and identify the parts		
	-Lubrication system		
1	-Cooling system.		
Week 12	Automotive Workshop		
	-The fuel system.		
	-The old and new ignition circuits.		
*** 1 10	-Written exam in practical exercises.		
Week 13	Turning Workshop		
	-Introduction to lathe machines and identifying their parts		
	-Measuring tools and the use of an oven measuring instrument		

	-Circular column lathing exercise on different diameters.
Week 14	Turning Workshop
	-Exercise using the pen (semicircular R) brackets.
	An exercise in making different angles using a pen (square + angle pen 55).
Week 15	Turning Workshop
	- Making shaft with different diameter exercises using (left and right pen)
	- Workout (Tube Connection).
	-Written exam in practical exercises.
Week 16	Fitting workshop
	Occupational safety and its importance in filing workshops
	-An introduction to the basics of filing
	-Pen holder exercise "preparation and preparation"
Week 17	Fitting workshop
	Pencil holder exercises finishing and assembling.
Week 18	Fitting workshop
	-The catcher exercise.
	- Clamping exercise.
	Written exam in practical exercises.
Week 19	Carpentry workshop
	-Occupational safety and its importance in carpentry workshops.
	- An introduction to carpentry, its types, types of wood, tools used, and
	preparation Preparing the tools used
	Face modification exercise using the reindeer
Week 20	Carpentry workshop
	Garden fence work and how to connect its parts, the eight-star exercise
Week 21	Carpentry workshop
	- Wood smoothing exercise using smoothing paper
	- Wood dyeing exercise in three stages
	Final smoothing and varnishing exercise
XXX 1 00	Written exam in practical exercises
Week 22	
	The tinsmith workshop
	Occupational safety and its importance in plumbing workshops
	An introduction to plumbing, its tools, and plumbing stages
	Planning and marking exercise on metal plates
Week 23	The tinsmith workshop
	Geometric shapes
	Types of individuals and methods of individuals
	Geometric shape individuals exercise on a metal board
Week 24	The tinsmith workshop
	Cone members exercise
	- Exercise of cylinders with an oblique cut

	Roll forming operations
	Connection without the use of an intermediary
	Written exam in practical exercises
Week 25	Electric Workshop
WCCK 25	Occupational Safety and its importance in electrical workshops
	An introduction to the basics of electrical installations
	- Linking a simple circuit consisting of a lamp to the control of a single-way
	switch.
	Connect two lamps in series with one-way switch control.
	Connecting two lamps in parallel with the control of a single road switch.
	Connect two lights with one-way dual switch control.
Week 26	electric Workshop
WCCK 20	Connect a fluorescent lamp circuit to a one-way switch control
	Connecting an electric supply socket circuit to the control of a separate or
	combined one-way switch
	Written exam in practical exercises
Week 27	electric Workshop
WCCK 27	Occupational Safety and its importance in blacksmithing workshops
	Introduction to the basics of Blacksmithing
	- Barbell adjustment exercise
	Eight-star exercise
	- Exercise forming the number eight in English
	Exercise forming the number six in English
Week 28	supplementary training curriculum
WCCK 20	Welding workshop
	Plumbing workshop
	Blacksmith's workshop
Week 29	supplementary training curriculum
Work 29	- Automotive workshop
	- Turning workshop
	Fitting workshop
Week 30	supplementary training curriculum
	Carpentry workshop
	The plumbing workshop
	electric Workshop

Learning and Teaching Resources			
	Text	Available in the	
		library	
Required Texts	Workshop technology and measurements,	yes	
	Ahmed Salem Al-Sabbagh,		
Recommended Texts			

Websites	
W Costics	İ