Subject: Mathematics II Instructor: Dr. Mohanad Farhan Hamid References: 1. Thomas' Calculus, 11th edition 2. Stewart Calculus, 8th edition

3. Kreyszig Advanced Engineering Mathematics, 10th edition

Description: The course continues the material the students learnt in their first year. The topics include vectors in 2 and 3-dimensional space, vector-valued functions, partial derivatives, double and triple integrals, infinite series and an introduction to differential equations.

Week no.	Lecture	Topics
1	Space coordinate systems	 Points in three-dimensional space Vectors in two and three-dimensional space Analytic geometry in space
2	Operations on vectors	 Addition of vectors (geometrically and algebraically) Dot product
3	Cross product	Geometric and algebraic meaning of cross product
4	Equations of lines in space	 Parametric equations of a line in space Relation between two lines (parallel, intersecting or skew) Distance from a point to a line Distance between two parallel lines
5	Planes	 Equations of planes Relation between two planes (parallel or intersecting) Distance from a point to a plane Distance from a line to a parallel plane Distance between two parallel planes
6	Vector-valued functions	 Their derivatives and integrals (Unit) tangent vector Tangent line
7	Quadric surfaces	 Recognizing the quadric surface from its equation Sketching quadric surfaces
8	Cylinders	Recognizing cylinders that are parallel to one of the coordinate axes and sketching them.

9	Multivariable functions	Functions of two or more variables
10	Partial derivatives	1. The two partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ 2. Their geometric meanings 3. Computing them
11	Tangent plane and linear approximation	Using partial derivatives to find the tangent plane to a surface and the linear approximation at a point.
12	Chain rule	 Differentials of x, y and z and total differentials Chain rule
13	Directional derivative	Finding the derivative in the direction of a given vector
14	Gradient	 Gradient vector Direction of maximum and minimum rate of change
15	Partial derivatives with constrained variables	Finding the partial derivatives of a function if there are some constraints on the variables
16	Double integrals I	Meaning, technique and applications of double integrals over rectangular regions
17	Double integrals II	 Finding double integrals over non- rectangular regions Reversing the order of the variables Dividing the region of integration
18	Polar coordinates	 Review of polar coordinates Transforming from cartesian to polar coordinates and vice-versa Sketching curves in polar coordinates
19	Double integrals in polar coordinates I	Finding double integrals in polar coordinates
20	Double integrals in polar coordinates II	Converting double integrals into polar coordinates
21	Triple integrals I	Triple integrals over rectangular boxes
22	Triple integrals II	Reversing the order of a triple integral
23	Triple integrals III	Triple integrals in cylindrical coordinates
24	Infinite series	Definition and examples of infinite series
25	Convergence tests I	 n-the term test Comparison tests

26	Convergence tests II	 Limit comparison test Ratio test
27	Convergence tests III	Alternating series: conditional and absolute convergence
28	Differential equations	 Physical problems stated as differential equations Solutions of differential equations
29	Solution techniques I	 Separation of variables Linear 1st order differential equations
30	Solution techniques II	 Bernoulli equations Exact differential equations