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PrefacePrefacePrefacePrefacePreface

The present edition of the book is a completely revised version of the earlier two
editions. The second edition provided an opportunity to correct several
typographical errors and wrong answers to some problems. Also, in addition,
based on many suggestions received, a chapter on composite materials was also
added and this addition was well received. Since this is a second-level course
addressed to senior level students, many suggestions were being received to
add several specialized topics. While it was difficult to accommodate all
suggestions in a book of this type, still, a few topics due to their importance
needed to be included and a new edition became necessary. As in the earlier
editions, the first five chapters deal with the general analysis of mechanics of
deformable solids. The contents of these chapters provide a firm foundation to
the mechanics of deformable solids which will enable the student to analyse and
solve a variety of strength-related design problems encountered in practice. The
second reason is to bring into focus the assumptions made in obtaining several
basic equations. Instances are many where equations presented in handbooks
are used to solve practical problems without examining whether the conditions
under which those equations were obtained are satisfied or not.

The treatment starts with Analysis of stress, Analysis of strain, and Stress–
Strain relations for isotropic solids. These chapters are quite exhaustive and
include materials not usually found in standard books. Chapter 4 dealing with
Theories of Failure or Yield Criteria is a general departure from older texts. This
treatment is brought earlier because, in applying any design equation in strength
related problems, an understanding of the possible factors for failure, depending
on the material properties, is highly desirable. Mohr’s theory of failure has been
considerably enlarged because of its practical application. Chapter 5 deals with
energy methods, which is one of the important topics and hence, is discussed in
great detail. The discussions in this chapter are important because of their
applicability to a wide variety of problems. The coverage is exhaustive and
discusses the theorems of Virtual Work, Castigliano, Kirchhoff, Menabria,
Engesser, and Maxwell–Mohr integrals. Several worked examples illustrate the
applications of these theorems.



Bending of beams, Centre of flexure, Curved Beams, etc., are covered in Chapter 6.
This chapter also discusses the validity of Euler–Bernoulli hypothesis in the
derivations of beam equations. Torsion is covered in great detail in Chapter 7.
Torsion of circular, elliptical, equilateral triangular bars, thin-walled multiple cell
sections, etc., are discussed. Another notable inclusion in this chapter is the
torsion of bars with multiply connected sections which, in spite of its importance,
is not found in standard texts. Analysis of axisymmetric problems like composite
tubes under internal and external pressures, rotating disks, shafts and cylinders
can be found in Chapter 8.

Stresses and deformations caused in bodies due to thermal gradients need
special attention because of their frequent occurrences. Usually, these problems
are treated in books on Thermoelasticity. The analysis of thermal stress problems
are not any more complicated than the traditional problems discussed in books
on Advanced Mechanics of Solids. Chapter 9 in this book covers thermal stress
problems.

Elastic instability problems are covered in Chapter 10. In addition to topics on
Beam Columns, this chapter exposes the student to the instability problem as an
eigenvalue problem. This is an important concept that a student has to appreciate.
Energy methods as those of Rayleigh–Ritz, Timoshenko, use of trigonometric
series, etc., to solve buckling problems find their place in this chapter.

Introduction to the mechanics of composites is found in Chapter 11. Modern–
day engineering practices and manufacturing industries make use of a variety of
composites. This chapter provides a good foundation to this topic. The subject
material is a natural extension from isotropic solids to anisotropic solids.
Orthotropic materials, off-axis loading, angle-ply and cross-ply laminates, failure
criteria for composites, effects of  Poisson’s ratio, etc., are covered with adequate
number of worked examples.

Stress concentration and fracture are important considerations in engineering
design. Using the theory-of-elasticity approach, problems in these aspects are
discussed in books solely devoted to these. However, a good introduction to
these important topics can be provided in a book of the present type. Chapter 12
provides a fairly good coverage with a sufficient number of worked examples.
Several practical problems can be solved with confidence based on the treatment
provided.

While SI units are used in most of numerical examples and problems, a few can
be found with kgf, meter and second units. This is done deliberately to make the
student conversant with the use of both sets of units since in daily life, kgf is
used for force and weight measurements. In those problems where kgf units are
used, their equivalents in SI units are also given.

The web supplements can be accessed at http://www.mhhe.com/srinath/ams3e
and it contains the following material:

For Instructors
Solution Manual
PowerPoint Lecture Slides

 xii Preface



For Students
MCQ’s (interactive)
Model Question Papers
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s normal stress
F forcen
T force vector on a plane with normal n
n
T x, y, z components of force vector in x, y, z directions
A area of section
A normal to the section
t shear stress
s x, y, z normal stress on x-plane, y-plane, z-plane
t xy, yz, zx shear stress on x-plane in y-direction, shear stress

on y-plane in z-direction, shear stress on z-plane in
x-direction

nx, ny, nz direction cosines of n in x, y, z directions
s1, s2, s3 principal stresses at a point
I1, I2, I3 first, second, third invariants of stress
soct normal stress on octahedral plane
toct shear stress on octahedral plane
sr, sq, sz normal stresses in radial, circumferential, axial (polar)

direction
g, q, j spherical coordinates
tgq, tgz, tqz shear stresses in polar coordinates
ux, uy, uz displacements in x, y, z directions
Exx, Eyy, Ezz linear strains in x-direction, y-direction, z-direction (with

non-linear terms)
exx, eyy, ezz linear strains (with linear terms only)
Exy, Eyz, Ezx shear strain components (with non-linear terms)
gxy, gyz, gzx shear strain components (with linear terms only)
wx, wy, wz rigid body rotations about x, y, z axes
D = exx+ eyy+ ezz cubical dilatation
e1, e2, e3 principal strains at a point
J1, J2, J3 first, second, third invariants of strain
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eg, eq, ez strains in radial, circumferential, axial directions
l, m Lame’s constants
G = m rigidity modulus
m engineering Poisson’s ratio
E modulus of elasticity
K bulk modulus; stress intensity factor
P pressure
u Poisson’s ratio
sy yield point stress
U elastic energy
U* distortion energy; complementary energy
sut ultimate stress in uniaxial tension
sct ultimate stress in uniaxial compression
aij influence coefficient; material constant
bij compliance component
Mx, My, Mz moments about x, y, z axes
d linear deflection; generalized deflection
Ix, Iy, Iz moments of inertia about x, y, z axes
Ir polar moment of inertia
Ixy, Iyz products of inertia about xy and yz coordinates
T torque; temperature
Y warping function
a coefficient of thermal expansion
Q lateral load
R axial load
V elastic potential
nij Poisson’s ratio in i-direction due to stress in j-direction
b, w width
t thickness
Kt theoretical stress concentration factor
N normal force
f stream function
r fillet radius
D, d radii
q notch sensitivity
Kc, KIc fracture toughness in mode I
Sy offset yield stress
w angular velocity
R fracture resistance
sfr fracture stress
G boundary
J J-integral
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SI UnitsSI UnitsSI UnitsSI UnitsSI Units
(Systeme International(Systeme International(Systeme International(Systeme International(Systeme International

d’Unit’es)d’Unit’es)d’Unit’es)d’Unit’es)d’Unit’es)

(a) Base Units

Quantity Unit (Symbol)
length meter (m)
mass kilogram (kg)
time second (s)
force newton (N)
pressure pascal (Pa)

force is a derived unit: kgm/s2

pressure is force per unit area: N/m2: kg/ms2

kilo-watt is work done per second: kNm/s

(b) Multiples
giga (G) 1 000 000 000
mega (M) 1 000 000
kilo (k) 1 000
milli (m) 0.001
micro (m) 0.000 001
nano (n) 0.000 000 001

(c) Conversion Factors

To Convert to Multiply by
kgf newton 9.8066
kgf/cm2 Pa 9.8066  ¥  104

kgf/cm2 kPa 98.066
newton kgf 0.10197
Pa N/m2 1
kPa kgf/cm2 0.010197
HP kW 0.746
HP kNm/s 0.746
kW kNm/s 1



Typical PhysicalTypical PhysicalTypical PhysicalTypical PhysicalTypical Physical
ConstantsConstantsConstantsConstantsConstants

(As an Aid to Solving Problems)(As an Aid to Solving Problems)(As an Aid to Solving Problems)(As an Aid to Solving Problems)(As an Aid to Solving Problems)

Material Ultimate Strength Yield Strength Elastic Poisson’s Coeff.
(MPa) (MPa) Modulus Ratio Therm

(GPa) Expans.
Tens. Comp Shear Tens or Shear Tens Shear per °C

 Comp ¥ 10–6

Aluminium alloy 414 414 221 300 170 73 28 0.334 23.2
Cast iron, gray 210 825 — — — 90 41 0.211 10.4
Carbon steel 690 690 552 415 250 200 83 0.292 11.7
Stainless steel 568 568 — 276 — 207 90 0.291 17.0

For more accurate values refer to hand-books on material properties



1.1 INTRODUCTION
In this book we shall deal with the mechanics of deformable solids. The starting
point for discussion can be either the analysis of stress or the analysis of strain. In
books on the theory of elasticity, one usually starts with the analysis of strain,
which deals with the geometry of deformation without considering the forces that
cause the deformation. However, one is more familiar with forces, though the
measurement of force is usually done through the measurement of deformations
caused by the force. Books on the strength of materials, begin with the analysis of
stress. The concept of stress has already been introduced in the elementry strength
of materials. When a bar of uniform cross-section, say a circular rod of diameter
d, is subjected to a tensile force F along the axis of the bar, the average stress
induced across any transverse section perpendicular to the axis of the bar and
away from the region of loading is given by

2
4

Area
F F

d
σ

π
= =

It is assumed that the reader is familiar with the elementary flexural stress
and torsional stress concepts. In general, a structural member or a machine
element will not possess uniform geometry of shape or size, and the loads
acting on it will also be complex. For example, an automobile crankshaft or a
piston inside an engine cylinder or an aircraft wing are subject to loadings that
are both complex as well as dynamic in nature. In such cases, one will have to
introduce the concept of the state of stress at a point and its analysis, which will
be the subject of discussion in this chapter. However, we shall not deal with
forces that vary with time.

It will be assumed that the matter of the body that is being considered is
continuously distributed over its volume, so that if we consider a small volume
element of the matter surrounding a point and shrink this volume, in the limit we
shall not come across a void. In reality, however, all materials are composed of
many discrete particles, which are often microscopic, and when an arbitrarily
selected volume element is shrunk, in the limit one may end up in a void. But in
our analysis, we assume that the matter is continuously distributed. Such a body

Analysis of Stress 1
CHAPTER



2 Advanced Mechanics of Solids

is called a continuous medium and the mechanics of such a body or bodies is
called continuum mechanics.

1.2 BODY FORCE, SURFACE FORCE
 AND STRESS VECTOR

Consider a body B occupying a region of space referred to a rectangular
coordinate system Oxyz, as shown in Fig. 1.1. In general, the body will be

y F1 F2

R3

1

P

R2

R1
F3

xo

Fig. 1.1 Body subjected to forces

p

z

1

subjected to two types of forces—
body forces and surface forces. The
body forces act on each volume ele-
ment of the body. Examples of this
kind of force are the gravitational
force, the inertia force and the mag-
netic force. The surface forces act
on the surface or area elements of
the body. When the area considered
lies on the actual boundary of the
body, the surface force distribution
is often termed surface traction. In
Fig. 1.1, the surface forces F1, F2,
F3 . . . Fr, are concentrated forces,
while p is a distributed force. The
support reactions R1, R2 and R3 are

p F2

C
DA¢

P ¢

DA

R3

F1

F3

R1R2

Fig. 1.2 Free-body diagram of a
body cut into two parts

P

D

also surface forces. It is explicitly assumed that under the action of both body
forces and surface forces, the body is in equilibrium.

Let P be a point inside the body with coordinates (x, y, z). Let the body
be cut into two parts C and D by a plane 1-1 passing through point P, as

shown in Fig. 1.2. If we consider the
free-body diagrams of C and D, then
each part is in equilibrium under the
action of the externally applied forces
and the internally distributed forces
across the interface. In part D, let DA
be a small area surrounding the point
P. In part C, the corresponding area
at P¢ is D A¢. These two areas are distin-
guished by their outward drawn normals
n
1
 and n

1
¢. The action of part C on DA at

point P can be represented by the force
vector DT

1 
and the action of part D on DA¢

at P¢ can be represented by the force vector
DT

1
¢. We assume that as DA tends to zero,

the ratio 
1

∆
∆

T
A

 tends to a definite limit, and

DT
1
¢

DT
1

n
1n

1
¢
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Analysis of Stress 3

If the body in Fig. 1.1 is cut by a different
plane 2-2 with outward drawn normals n

2
 and

n
2
¢ passing through the same point P, then

the stress vector representing the action
of C2 on D2 will be represented by T

2

(Fig. (1.3)), i.e.
2

2

0
lim
A A∆ →

∆= =
∆

TT

In general, stress vector T
1
 acting at point

P on a plane with outward drawn normal n
1

will be different from stress vector T
2
 acting

further, the moment of the forces acting on area D A about any point within the
area vanishes in the limit. The limiting vector is written as

1 1
1

0
lim
A

d
A dA∆ →

∆ = =
∆

T T T (1.1)

Similarly, at point P¢, the action of part D on C as D A¢ tends to zero, can be
represented by a vector

0
1 1

1

0
lim
A

d
A dA∆ →′

∆ ′ ′= = ′
∆ ′ ′

T T T (1.2)

Vectors 
1 1

and ′T T  are called the stress vectors and they represent forces per
unit area acting respectively at P and P ¢ on planes with outward drawn normals
n
1
 and n

1
¢.

We further assume that stress vector T
1
 representing the action of C on D

at P is equal in magnitude and opposite in direction to stress vector T
1
¢

representing the action of D on C at corresponding point P¢. This assump-
tion is similar to Newton’s third law, which is applicable to particles. We
thus have

1 1
= − ′T T (1.3)

Fig. 1.3 Body cut by another plane

at the same point P, but on a plane with outward drawn normal 
2
n . Hence the

stress at a point depends not only on the location of the point (identified by coordi-
nates x, y, z) but also on the plane passing through the point (identified by direc-
tion cosines nx, ny, nz of the outward drawn normal).

C2

P ¢

P

D2

DT
2
¢

DT
2n

2
n

2
¢



4 Advanced Mechanics of Solids

1.3 THE STATE OF STRESS AT A POINT
Since an infinite number of planes can be drawn through a point, we get an
infinite number of stress vectors acting at a given point, each stress vector
characterised by the corresponding plane on which it is acting. The totality of
all stress vectors acting on every possible plane passing through the point is
defined to be the state of stress at the point. It is the knowledge of this state of
stress that is of importance to a designer in determining the critical planes and
the respective critical stresses. It will be shown in Sec. 1.6 that if the stress
vectors acting on three mutually perpendicular planes passing through the point
are known, we can determine the stress vector acting on any other arbitrary
plane at that point.

1.4 NORMAL AND SHEAR STRESS COMPONENTS

Let 
n
T  be the resultant stress vector at point P acting on a plane whose outward

drawn normal is n (Fig.1.4). This can be resolved into two components, one along

1.5 RECTANGULAR STRESS COMPONENTS
Let the body B, shown in Fig. 1.1, be cut by a plane parallel to the yz plane. The
normal to this plane is parallel to the x axis and hence, the plane is called the x
plane. The resultant stress vector at P acting on this will be 

x
T . This vector can

be resolved into three components parallel to the x, y, z axes. The component
parallel to the x axis, being normal to the plane, will be denoted by sx (instead of by
s
x
). The components parallel to the y and z axes are shear stress components and

are denoted by txy and txz respectively (Fig.1.5).

tn

n

Fig. 1.4 Resultant stress
vector, normal
and shear stress
components

T
n

y
T
n

T
n

x

T
n

z

s
n

the normal n and the other perpendicular to n. The
component parallel to n is called the normal stress
and is generally denoted by 

n
σ . The component per-

pendicular to n is known as the tangential stress or
shear stress component and is denoted by 

n
τ . We

have, therefore, the relation:

2
2 2

n nn
σ τ= +T (1.4)

where 
n
T  is the magnitude of the resultant stress.

Stress vector 
n
T can also be resolved into three

components parallel to the x, y, z axes. If these

components are denoted by , , ,
n n n

x y zT T T  we have

2
2 2 2

n n nn
x y z= + +T T T T (1.5)
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In the above designation, the first
subscript x indicates the plane on
which the stresses are acting and the
second subscript (y or z) indicates the
direction of the component. For ex-
ample, txy is the stress component on
the x plane in y direction. Similarly,
txz is the stress component on the
x plane in z direction. To maintain
consistency, one should have denoted
the normal stress component as txx. This
would be the stress component on the
x plane in the x direction. However, to
distinguish between a normal stress and

a shear stress, the normal stress is denoted by s and the shear stress by t.
At any point P, one can draw three mutually perpendicular planes, the x plane,

the y plane and the z plane. Following the notation mentioned above, the normal
and shear stress components on these planes are

sx, txy, txz on x plane
sy, tyx, tyz on y plane
sz, tzx, tzy on z plane

These components are shown acting on a small rectangular element surround-
ing the point P in Fig. 1.6.

syy

tyx

sx
tzy

txy

txz

sz

tzx

tyx

sx

sy

z

x

Fig. 1.6 Rectangular stress components

tyz

y

z

o
x

txz

txy

sx

n

Fig. 1.5 Stress components on x plane

One should observe that the three visible faces of the rectangular element
have their outward drawn normals along the positive x, y and z axes respectively.
Consequently, the positive stress components on these faces will also be directed
along the positive axes. The three hidden faces have their outward drawn normals

T
x
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in the negative x, y and z axes. The positive stress components on these faces
will, therefore, be directed along the negative axes. For example, the bottom face
has its outward drawn normal along the negative y axis. Hence, the positive stress
components on this face, i.e., sy, tyx and tyz are directed respectively along the
negative y, x and z axes.

1.6 STRESS COMPONENTS ON AN ARBITRARY PLANE
It was stated in Section 1.3 that a knowledge of stress components acting on three
mutually perpendicular planes passing through a point will enable one to deter-
mine the stress components acting on any plane passing through that point. Let
the three mutually perpendicular planes be the x, y and z planes and let the
arbitrary plane be identified by its outward drawn normal n whose direction

y

B n

sz

xPsx

z

C
sy

A

Fig. 1.7 Tetrahedron at point P

Since the size of the tetrahedron considered is very small and in the limit as we
are going to make h tend to zero, we shall speak in terms of the average stresses
over the faces. Let 

n
T  be the resultant stress vector on face ABC. This can be

resolved into components , , ,
n n n

x y zT T T  parallel to the three axes x, y and z. On the
three faces, the rectangular stress components are sx, txy, txz, sy, tyz, tyx, sz, tzx
and tzy. If A is the area of the inclined face then

Area of BPC = projection of area ABC on the yz plane
 = Anx

Area of CPA = projection of area ABC on the xz plane
= Any

Area of APB = projection of area ABC on the xy plane
= Anz

Let the body force components in x, y and z directions be gx, gy and gz respectively,

per unit volume. The volume of the tetrahedron is equal to 1
3  Ah where h is the

perpendicular distance from P to the inclined face. For equilibrium of the

cosines are nx, ny and nz.
Consider a small tetrahedron
at P with three of its faces
normal to the coordinate
axes, and the inclined face
having its normal parallel to
n. Let h be the perpendicu-
lar distance from P to the
inclined face. If the tetrahe-
dron is isolated from the
body and a free-body dia-
gram is drawn, then it will
be in equilibrium under the
action of the surface forces
and the body forces. The
free-body diagram is shown
in Fig. 1.7.

T
n

y

T
n

xT
n

z
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tetrahedron, the sum of the forces in x, y and z directions must individually
vanish. Thus, for equilibrium in x direction

n

xT A – sx Anx – tyx Any – tzx Anz + 1
3 Ahgx = 0

Cancelling A,
n

xT  = sx nx + tyx ny + tzx nz – 1
3 hgx (1.6)

Similarly, for equilibrium in y and z directions
n

yT  = txynx + sy ny + tzynz  – 1
3 hgy (1.7)

and  
n

zT  = txznx + tyzny + sznz – 1
3 hgz (1.8)

In the limit as h tends to zero, the oblique plane ABC will pass through
point P, and the average stress components acting on the faces will tend to their
respective values at point P acting on their corresponding planes. Consequently,
one gets from equations (1.6)–(1.8)

n

xT  = nx sx + ny tyx + nz tzx
n

yT  = nx txy + ny sy + nz tzy (1.9)
n

zT  = nx txz + ny tyz + nz sz

Equation (1.9) is known as Cauchy’s stress formula. This equation shows that
the nine rectangular stress components at P will enable one to determine the stress
components on any arbitrary plane passing through point P. It will be shown in
Sec. 1.8 that among these nine rectangular stress components only six are indepen-
dent. This is because txy = tyx, tzy = tyz and tzx = txz. This is known as the equality
of cross shears. In anticipation of this result, one can write Eq. (1.9) as

n

iT = nx tix + ny tiy + nz tiz = 
j
∑nj tij (1.10)

where i and j can stand for x or y or z, and sx = txx, sy = tyy and sz = tzz.
If 

n
T is the resultant stress vector on plane ABC, we have

2 2 2 2n n n n
x y z= + +T T T T (1.11a)

If sn and tn are the normal and shear stress components, we have
2

2 2n
n nσ τ= +T (1.11b)

Since the normal stress is equal to the projection of 
n
T  along the normal, it is

also equal to the sum of the projections of its components 
n

xT , 
n

yT  and 
n

zT  along
n. Hence,

sn = nx

n
xT  + ny

n

yT  + nz

n

zT (1.12a)
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Substituting for 
n

xT , 
n

yT  and 
n

zT  from Eq. (1.9)

sn = nx
2sx + ny

2sy + nz
2 sz + 2nxny txy + 2nynz tyz + 2nznx tzx (1.12b)

Equation (1.11) can then be used to obtain the value of tn

Example 1.1 A rectangular steel bar having a cross-section 2 cm ¥ 3 cm is
subjected to a tensile force of 6000 N (612.2 kgf ). If the axes are chosen as
shown in Fig. 1.8, determine the normal and shear stresses on a plane whose
normal has the following direction cosines:

(i) nx = ny = 
1
2 , nz = 0

(ii) nx = 0, ny = nx = 
1
2

(iii) nx = ny = nx = 
1
3

y F

z F

x

n

( a ) ( b ) ( c )

Fig. 1.8 Example 1.1

Solution Area of section = 2 ¥ 3 = 6 cm2. The average stress on this plane is
6000/6 = 1000 N/cm2. This is the normal stress s y. The other stress components
are zero.

(i) Using Eqs (1.9), (1.11b) and (1.12a)

10000, , 0
2

n n n
x y z= = =T T T

 21000 500 N/cm2nσ = =

 
2

2 2 2 4250,000 N /cm
n

n nτ σ= − =T

2 2500 N/cm (51 kgf/cm )nτ =

T
n T

n
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(ii) 10000, , 0
2

n n n
x y z= = =T T T

2 2 2500 N/cm , and 500 N/cm (51 kgf/cm )n nσ τ= =

(iii)
10000, , 0

3

n n n
x y z= = =T T T

21000 N/cm3nσ =

2 2817 N/cm (83.4 kgf/cm )nτ =

Example 1.2 At a point P in a body, sx = 10,000 N/cm2 (1020 kgf/cm2), sy =
–5,000 N/cm2 (–510 kgf/cm2), sz =  –5,000 N/cm2, txy  =  tyz = tzx = 10,000 N/cm2.
Determine the normal and shearing stresses on a plane that is equally inclined
to all the three axes.

Solution A plane that is equally inclined to all the three axes will have

nx = ny = nz = 
1
3  since                      = 1

From Eq. (1.12)

sn = 1
3  [10000 – 5000 – 5000 + 20000 + 20000 + 20000]

= 20000 N/cm2

From Eqs (1.6)–(1.8)
n

xT = 1
3

 (10000 + 10000 + 10000) = 10000 3  N/cm2

n

yT = 1
3

 (10000 – 5000 + 10000) = –5000 3  N/cm2

n

zT = 1
3

 (10000 – 10000 – 5000) = –5000 3  N/cm2

\
2n

T = 3 [(108) + (25 ¥ 106) + (25 ¥ 106)] N2/cm4

= 450 ¥ 106 N2/cm4

\ tn
2 = 450 ¥ 106 – 400 ¥ 106 = 50 ¥ 106 N2/cm4

or   tn  = 7000 N/cm2 (approximately)

Example 1.3 Figure 1.9 shows a cantilever beam in the form of a trapezium of
uniform thickness loaded by a force P at the end. If it is assumed that the bending
stress on any vertical section of the beam is distributed according to the elementary

2 2 2
x y zn n n+ +
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y

A
s1

s x
E A

P

B

q

F

A s1

c

c

s1 B
( a ) ( b )

s s

( c )

s1
s1t1

( d )

Fig. 1.9 Example 1.3

A A
t1

flexure formula, show that the normal stress s on a section perpendicular to
the top edge of the beam at point A is 1

2cos
σ

θ
, where s1 is the flexural stress

Solution At point A, let axes x and y be chosen along and perpendicular to the
edge. On the x plane, i.e. the plane perpendicular to edge EF, the resultant stress
is along the normal (i.e., x axis). There is no shear stress on this plane since the
top edge is a free surface (see Sec. 1.9). But on plane AB at point A there can
exist a shear stress. These are shown in Fig. 1.9(c) and (d). The normal to plane
AB makes an angle q with the x axis. Let the normal and shearing stresses on this
plane be s1 and t1.
We have

, 0, 0x y z xy yz zxσ σ σ σ τ τ τ= = = = = =

The direction cosines of the normal to plane AB are

cos , sin , 0x y zn n nθ θ= = =

The components of the stress vector acting on plane AB are
n

xT  = s1 = nx sx + ny tyx + nz tzy = s cosq
n

yT  = nx txy + ny sy + nz tzy = 0

n

zT  = nx txz + ny tyz + nz s z = 0

Therefore, the normal stress on plane 
n n n

x y zn x y zAB n n nσ= = + + =T T T
s cos2 q.

Mc
I

, as shown in Fig. 1.9(b).
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Since sn = s1

s 1
2 2cos cos

Mc
I

σ
θ θ

= =

Further, the resultant stress on plane AB is
2n

T 2 2 2 2 2cos
n n n

x y z σ θ= + + =T T T

Hence t 2 = s 2 cos2q – sn
2

= s 2 cos2q – s 2 cos4q

or t = 
1
2

s sin 2q

1.7 DIGRESSION ON IDEAL FLUID
By definition, an ideal fluid cannot sustain any shearing forces and the normal
force on any surface is compressive in nature. This can be represented by

, 0
n

p p= − ≥T n

The rectangular components of 
n
T  are obtained by taking the projections of 

n
T

along the x, y and z axes. If nx, ny and nz are the direction cosines of n, then

, ,
n n n

x y zx y zpn pn pn= − = − = −T T T (1.13)

Since all shear stress components are zero, one has from Eqs. (1.9),

, ,
n n n

x y zx x y y z zn n nσ σ σ= = =T T T
(1.14)

Comparing Eqs (1.13) and (1.14)

sx = sy = sz = –p

Since plane n was chosen arbitrarily, one concludes that the resultant stress
vector on any plane is normal and is equal to –p. This is the type of stress that a
small sphere would experience when immersed in a liquid. Hence, the state of
stress at a point where the resultant stress vector on any plane is normal to the
plane and has the same magnitude is known as a hydrostatic or an isotropic state
of stress. The word isotropy means ‘independent of orientation’ or ‘same in all
directions’. This aspect will be discussed again in Sec. 1.14.

1.8 EQUALITY OF CROSS SHEARS
We shall now show that of the nine rectangular stress components sx, txy, txz, sy,
tyx, tyz, sz, tzx and tzy, only six are independent. This is because txy =tyx, tyz = tzy
and tzx = txz. These are known as cross-shears. Consider an infinitesimal rectan-
gular parallelpiped surrounding point P. Let the dimensions of the sides be D x, Dy
and D z (Fig. 1.10).
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Y tyy + Dtyy

Dz

tyx + Dtyx

txy + Dtxy

txx tzx + Dtzx
Dy txy

txz + Dtxz

Dx

Z tyy

X

Fig. 1.10 Stress components on a rectangular element

Since the element considered is small, we shall speak in terms of average stresses
over the faces. The stress vectors acting on the faces are shown in the figure. On
the left x plane, the stress vectors are txx, txy and txz. On the right face, the stresses
are txx + Dtxx, txy + Dtxy and txz + Dtxz. These changes are because the right face is
at a distance D x from the left face. To the first order of approximation we have

, ,xyxx xz
xx xy xzx x xx x x

∂τ∂τ ∂τ
τ τ τ

∂ ∂ ∂
∆ = ∆ ∆ = ∆ ∆ = ∆

Similarly, the stress vectors on the top face are tyy + Dtyy, tyx + Dtyx and
tyz + Dtyz, where

, ,yy yx yz
yy yx yzy y yy y y

∂τ ∂τ ∂τ
τ τ τ

∂ ∂ ∂
∆ = ∆ ∆ = ∆ ∆ = ∆

On the rear and front faces, the components of stress vectors are respectively

tzz, tzx, tzy

tzz + Dtzz, tzx + Dtzx, tzy + Dtzy
where

, , zyzxzz
zz zx zyz z zz z z

∂τ∂τ∂τ
τ τ τ

∂ ∂ ∂
∆ = ∆ ∆ = ∆ ∆ = ∆

For equilibrium, the moments of the forces about the x, y and z axes must
vanish individually. Taking moments about the z axis, one gets

txx Dy Dz 
2
y∆  – (txx + Dtxx) Dy Dz 

2
y∆  +

(txy + Dtxy) Dy Dz Dx – tyy Dx Dz 
2
x∆  +

(tyy + Dtyy) Dx Dz 
2
∆x  – (tyx + Dtyx) Dx Dz Dy +

txx + Dtxx
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tzy Dx Dy 
2
x∆  – tzx Dx Dy 

2
y∆  – (tzy + Dtzy) Dx Dy 

2
x∆  +

(tzx + Dtzx) Dx Dy 
2
y∆ = 0

Substituting for Dtxx, Dtxy etc., and dividing by Dx Dy Dz

2 2
xy yyxx

xy
y yxx x y

∂τ ∂τ∂τ
τ∂ ∂ ∂

∆ ∆
− + + ∆ + −

02 2
yx zy zx

yx
yxyy z z

∂τ ∂τ ∂τ
τ

∂ ∂ ∂
∆∆− ∆ − + =

In the limit as Dx, Dy and Dz tend to zero, the above equation gives txy = tyx.
Similarly, taking moments about the other two axes, we get tyz = tzy and tzx = txz.
Thus, the cross shears are equal, and of the nine rectangular components, only six
are independent. The six independent rectangular stress components are sx, sy,
sz, txy, tyz and tzx.

1.9 A MORE GENERAL THEOREM
The fact that cross shears are equal can be used to prove a more general
theorem which states that if n and n¢ define two planes (not necessarily

n¢

n

n
T
′

n
T

Fig. 1.11 Planes with normals n and n¢

n′
′T n⋅

n′
T n⋅

orthogonal but in the limit
passing through the same point)
with corresponding stress vectors

and ,
n n
T T then the projection of
n
T along n¢ is equal to the pro-

jection of 
n′
T along n, i.e.

n′
T ◊◊◊◊◊ n =

n′
T ◊◊◊◊◊ n  (see Fig. 1.11).

The proof is straightforward. If

,x yn n′ ′  and ′zn  are the direction

cosines of n¢, then
n
T ◊◊◊◊◊  n¢ = 

n n n
x x y y z zn n n+ +′ ′ ′T T T

From Eq. (1.9), substituting for

, and
n n n
x y zT T T  and regroup-

ing normal and shear stresses
n
T ◊◊◊◊◊ n¢ = sx nx n¢x + sy ny n¢y + sz nz n¢z + txy nx n¢y + tyx ny n¢x +

tyz ny n¢z + tzy nz n¢y + tzx nz n¢x + txz nx n¢z
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Using the result txy = tyx, tyz = tzy and tzx = tzx
n
T ⋅ n¢ = sx nx n¢x + sy ny n¢y + sz nz n¢z + txy (nx n¢y + ny n¢x) +

tyz (ny n¢z + nz n¢y) + tzx (nz n¢x + nx n¢z)
Similarly,

n′
T ⋅ n = sx nx n¢x + sy ny n¢y + sz nz n¢z + txy (nx n¢y + ny n¢x) +

tyz (ny n¢z + nz n¢y) + tzx (nz n¢x + nx n¢z)

Comparing the above two expressions, we observe

′
=′

n n
T n T n⋅ ⋅ (1.15)

Note: An important fact is that cross shears are equal. This can be used to prove
that a shear cannot cross a free boundary. For example, consider a beam of
rectangular cross-section as shown in Fig. 1.12.

y

A

x

tyx = 0

A
txy = 0

(a) (b)

Fig. 1.12 (a) Element with free surface; (b) Cross shears being zero

If the top surface is a free boundary, then at point A, the vertical shear
stres component txy = 0 because if txy were not zero, it would call for a
complementary shear ty x on the top surface. But as the top surface is an
unloaded or a free surface, tyx is zero and hence, txy is also zero (refer
Example 1.3).

1.10 PRINCIPAL STRESSES

We have seen that the normal and shear stress components can be determined on
any plane with normal n, using Cauchy's formula given by Eqs (1.9). From the
strength or failure considerations of materials, answers to the following questions
are important:

(i) Are there any planes passing through the given point on which the result-
ant stresses are wholly normal (in other words, the resultant stress vector
is along the normal)?

(ii) What is the plane on which the normal stress is a maximum and what is its
magnitude?

(iii) What is the plane on which the tangential or shear stress is a maximum
and what it is its magnitude?

Answers to these questions are very important in the analysis of stress, and the
next few sections will deal with these. Let us assume that there is a plane n with

Chapter_01.pmd 7/3/2008, 5:27 AM14
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direction cosines nx, ny and nz on which the stress is wholly normal. Let s be the
magnitude of this stress vector. Then we have

n
T  = s n (1.16)

The components of this along the x, y and z axes are

, ,
n n n

x y zx y zn n nσ σ σ= = =T T T (1.17)

Also, from Cauchy’s formula, i.e. Eqs (1.9),
n

xT  = sx nx + txy ny + txz nz
n

yT = txy nx + sy ny + tyz nz

n
zT = txz nx + tyz ny + sz nz

Subtracting Eq. (1.17) from the above set of equations we get
(sx – s) nx + txy ny + txz nz = 0

txy nx + (sy – s) ny + tyz nz = 0 (1.18)

txz nx + tyz ny + (sz – s ) nz = 0
We can view the above set of equations as three simultaneous equations involv-

ing the unknowns nx, ny and nz. These direction cosines define the plane on which
the resultant stress is wholly normal. Equation (1.18) is a set of homogeneous
equations. The trivial solution is nx = ny = nz = 0. For the existence of a non-trivial
solution, the determinant of the coefficients of nx, ny and nz must be equal to zero, i.e.

( )
( )

( )
0

x xy xz

xy y yz

xz yz z

σ σ τ τ

τ σ σ τ

τ τ σ σ

−

− =

−
(1.19)

Expanding the above determinant, one gets a cubic equation in s as

s3 – (sx + sy + sz)s 2 + (sx sy + sy sz +sz sx – 2 2 2
x y y z z xτ τ τ− − ) s –

(sx sy sz + 2txy tyz tzx – sx 
2 2 2
yz y xz z xyτ σ τ σ τ− − ) = 0 (1.20)

The three roots of the cubic equation can be designated as s1, s2 and s3. It
will be shown subsequently that all these three roots are real. We shall later give
a method (Example 4) to solve the above cubic equation. Substituting any one of
these three solutions in Eqs (1.18), we can solve for the corresponding nx, ny and
nz. In order to avoid the trivial solution, the condition.

2 2 2 1x y zn n n+ + = (1.21)

is used along with any two equations from the set of Eqs (1.18). Hence, with each
s there will be an associated plane. These planes on each of which the stress
vector is wholly normal are called the principal planes, and the corresponding
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stresses, the principal stresses. Since the resultant stress is along the normal, the
tangential stress component on a principal plane is zero, and consequently, the
principal plane is also known as the shearless plane. The normal to a principal
plane is called the principal stress axis.

1.11 STRESS INVARIANTS
The coefficients of s 2, s and the last term in the cubic Eq. (1.20) can be written as
follows:

l1 = sx + sy + sz (1.22)

l2 = sxsy + sysz + szsx – 2 2 2
xy yz zxτ τ τ− −

x xy y yz x xz

xz zxy y yz z

σ τ σ τ σ τ
τ στ σ τ σ

= + + (1.23)

l3 = sx sy sz + 2txy tyz tzx – sx 
2
yzτ  – sy 

2
zxτ  – sz 

2
xyτ

x xy zx

xy y yz

zx yz z

σ τ τ

τ σ τ

τ τ σ

= (1.24)

Equation (1.20) can then be written as

s3 – l1s
2 + l2s – l3 = 0

The quantities l1, l2 and l3 are known as the first, second and third invari-
ants of stress respectively. An invariant is one whose value does not change
when the frame of reference is changed. In other words if x¢, y¢, z¢, is
another frame of reference at the same point and with respect to this frame
of reference, the rectangular stress competence are , , , ,x y z x y y zσ σ σ τ τ′ ′ ′ ′ ′ ′ ′
and z xτ ′ ′ , then the values of l1, l2 and l3, calculated as in Eqs (1.22) – (1.24),
will show that

sx + sy + sz = sx¢ + sy¢ + sz¢

i.e. l1 = 1l ′

and similarly, 2 2 3 3andl l l l= =′ ′

The reason for this can be explained as follows. The principal stresses at a point
depend only on the state of stress at that point and not on the frame of
reference describing the rectangular stress components. Hence, if xyz and
x¢y¢z¢ are two orthogonal frames of reference at the point, then the following
cubic equations

s 3 – l1 s 2 + l2 s – l3 = 0

and s 3 – l¢1 s 2 + l¢2 s – l¢3 = 0
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must give the same solutions for s. Since the two systems of axes were arbitrary,
the coefficients of s 2, and s and the constant terms in the two equations must be
equal, i.e.

1 1 2 2 3 3, andl l l l l l= = =′ ′ ′

In terms of the principal stresses, the invariants are
l1 = s1 + s2 + s3

l2 = s1s2 + s2s3 + s3s1

l3 = s1s2s3

1.12 PRINCIPAL PLANES ARE ORTHOGONAL
The principal planes corresponding to a given state of stress at a point can be
shown to be mutually orthogonal. To prove this, we make use of the general
theorem in Sec. 1.9. Let n and n¢ be the two principal planes and s1 and s2, the
corresponding principal stresses. Then the projection of s1 in direction n¢ is
equal to the projection of s2 in direction n, i.e.

s1n¢ ◊◊◊◊◊ n = s2n ◊◊◊◊◊ n¢ (1.25)
If nx , ny and nz are the direction cosines of n, and n¢x, n¢y and n¢z those of n¢, then
expanding Eq. (1.25)

( ) ( )1 2x x y y z z x x y y z zn n n n n n n n n n n nσ σ+ + = + +′ ′ ′ ′ ′ ′

Since in general, s1 and s2 are not equal, the only way the above equation can
hold is

0x x y y z zn n n n n n+ + =′ ′ ′

i.e. n and n¢ are perpendicular to each other. Similarly, considering two other
planes n¢ and n¢¢ on which the principal stresses s2 and s3 are acting, and
following the same argument as above, one finds that n¢ and n¢¢ are perpendicular
to each other. Similarly, n and n¢¢ are perpendicular to each other. Consequently,
the principal planes are mutually perpendicular.

1.13 CUBIC EQUATION HAS THREE REAL ROOTS
In Sec. 1.10, it was stated that Eq. (1.20) has three real roots. The proof is as
follows. Dividing Eq. (1.20) by s 2,

32
1 2 0

lllσ
σ σ

− + − =

For appropriate values of s, the quantity on the left-hand side will be equal to
zero. For other values, the quantity will not be equal to zero and one can write the
above function as

( )32
1 2

lll fσ σ
σ σ

− + − = (1.26)

Since l1, l2 and l3 are finite, f (s ) can be made positive for large positive values of
s. Similarly, f (s ) can be made negative for large negative values of s. Hence, if one
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plots f (s ) for different values of
s as shown in Fig. 1.13, the curve
must cut the s axis at least once as
shown by the dotted curve and for
this value of s, f (s ) will be equal to
zero. Therefore, there is at least one
real root.

Let s3 be this root and n the as-
sociated plane. Since the state of
stress at the point can be

z ¢ sz ¢

o

x ¢

sy ¢

tx ¢y ¢

y ¢

Fig 1.14 Rectangular element
with faces normal
to x¢, y¢, z¢ axes

Expanding (s3 – s ) [s 2 – (sx¢ + sy¢)
2 ] 0x y x yσ σ σ τ′ ′ ′ ′+ − =

This is a cubic in s. One of the solutions is s = s3. The two other solutions are
obtained by solving the quadratic inside the brakets. The two solutions are

1
2 2

2
1,2 2 2

σ σ σ σ
σ τ′ ′ ′ ′

′ ′

⎡ ⎤+ −⎛ ⎞
⎢ ⎥= ± +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

x y x y
x y (1.29)

The quantity under the square root ( )1power 2
 is never negative and hence,

s1 and s2 are also real. This means that the curve for f (s ) in Fig. 1.13 will cut the
s axis at three points A, B and C in general. In the next section we shall study a
few particular cases.

Figure 1.14 shows these stress vectors
on a rectangular element. The shear stress
components tx¢z¢ and ty¢z¢ are zero since the
z¢ plane is chosen to be the principal plane.
With reference to this system, Eq. (1.19)
becomes

( )
( )

( )3

0

0 0

0 0

x x y

x y y

σ σ τ

τ σ σ

σ σ

′ ′ ′

′ ′ ′

−

− =

−

(1.28)

f (s)

A B C
s

Fig.1.13 Plot of f(s ) versus s

characterised by the six rectangular components referred to any orthogonal frame
of reference, let us choose a particular one, x¢y¢z¢, where the z¢ axis is along n and
the other two axes, x¢ and y¢, are arbitrary. With reference to this system, the stress
matrix has the form.

3

0

0

0 0

x x y

x y y

σ τ

τ σ

σ

′ ′ ′

′ ′ ′

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(1.27)
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1.14 PARTICULAR CASES
(i) If s1, s2 and s3 are distinct, i.e. s1, s2 and s3 have different values, then

the three associated principal axes n1, n2 and n3 are unique and mutually
perpendicular. This follows from Eq. (1.25) of Sec. 1.12. Since s1, s2 and
s3 are distinct, we get three distinct axes n1, n2 and n3 from Eqs (1.18), and
being mutually perpendicular they are unique.

(ii) If s1 = s2 and s3 is distinct, the
axis of n3 is unique and every
direction perpendicular to n3 is
a principal direction associated
with s1 = s2. This is shown in
Fig. 1.15.

To prove this, let us choose a
frame of reference Ox¢y¢z¢ such
that the z¢ axis is along n3 and
the x¢ and y¢ axes are arbitrary.

n3

0

Fig. 1.15 Case with s1 = s2
and s3 distinct

From Eq. (1.29), if s1 = s2, then the quantity under the radical must
be zero. Since this is the sum of two squared quantities, this can happen
only if

sx¢ = sy¢ and tx¢y¢ = 0

But we have chosen x¢ and y¢ axes arbitrarily, and consequently the
above condition must be true for any frame of reference with the z¢ axis
along n3. Hence, the x¢ and y¢ planes are shearless planes, i.e. principal
planes. Therefore, every direction perpendicular to n3 is a principal direc-
tion associated with s1 = s2.

(iii) If s1 = s2 = s3, then every direction is a principal direction. This is
the hydrostatic or the isotropic state of stress and was discussed in
Sec. 1.7. For proof, we can repeat the argument given in (ii). Choose a
coordinate system Ox¢y¢z¢ with the z¢ axis along n3 corresponding to s3.
Since s1 = s2 every direction perpendicular to n3 is a principal direction.
Next, choose the z¢ axis parallel to n2 corresponding to s2. Then every
direction perpendicular to n2 is a principal direction since s1 = s3.
Similarly, if we choose the z¢ axis parallel to n1 corresponding to s1,
every direction perpendicular to n1 is also a principal direction. Conse-
quently, every direction is a principal direction.

Another proof could be in the manner described in Sec. 1.7. Choosing Oxyz
coinciding with n1, n2 and n3, the stress vector on any arbitrary plane n has value
s, the direction of s coinciding with n. Hence, every plane is a principal plane.
Such a state of stress is equivalent to a hydrostatic state of stress or an isotropic
state of stress.

1.15 RECAPITULATION
The material discussed in the last few sections is very important and it is worth-
while to put it in the form of definitions and theorems.
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Definition

For a given state of stress at point P, if the resultant stress vector 
n
T  on any plane

n is along n having a magnitude s, then s is a principal stress at P, n is the
principal direction associated with s, the axis of s is a principal axis, and the
plane is a principal plane at P.

Theorem

In every state of stress there exist at least three mutually perpendicular principal
axes and at most three distinct principal stresses. The principal stresses s1, s2
and s3 are the roots of the cubic equation

s 3 – l1s
2 + l2s – l3 = 0

where l1, l2 and l3 are the first, second and third invariants of stress. The principal
directions associated with s1, s2 and s3 are obtained by substituting si (i = 1, 2, 3)
in the following equations and solving for nx, ny and nz:

(sx – si) nx + txy ny + txz nz = 0

txy nx + (sy – si) ny + tyz nz = 0
2 2 2
x y zn n n+ + = 1

If s1, s2 and s3 are distinct, then the axes of n1, n2 and n3 are unique and
mutually perpendicular. If, say s1 = s2 π s3, then the axis of n3 is unique and
every direction perpendicular to n3 is a principal direction associated with
s1 = s2. If s1 = s2 = s3, then every direction is a principal direction.

Standard Method of Solution

Consider the cubic equation y3 + py2 + qy + r = 0, where p, q and r are constants.

Substitute y = x – 1
3

p

This gives x3 + ax + b = 0

where a = ( ) ( )2 31 13 , 2 9 273 27q p b p pq r− = − +

Put cos f 1/ 23
2 27

b

a
= −

⎛ ⎞−⎜ ⎟
⎝ ⎠

Determine f, and putting 2 /3g a= − , the solutions are

y1 = g cos 
3 3

pφ
−

y2 = cos 120
3 3

pg φ⎛ ⎞+ ° −⎜ ⎟⎝ ⎠

y3 = cos 2403 3
pg φ⎛ ⎞+ ° −⎜ ⎟⎝ ⎠
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Example 1.4 At a point P, the rectangular stress components are

1, 2, 4, 2, 3, and 1x y z xy yz xzσ σ σ τ τ τ= = − = = = − =

all in units of kPa. Find the principal stresses and check for invariance.

Solution The given stress matrix is

1 2 1
2 2 3
1 3 4

ijτ
⎡ ⎤
⎢ ⎥⎡ ⎤ = − −⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

From Eqs (1.22)–(1.24),

l1 =  1 – 2  + 4 = 3
l2 = (–2 – 4) + (–8 – 9) + (4 – 1) = –20
l3 = 1(–8 – 9) –2(8 + 3) + 1 (–6 + 2) = – 43

\ f (s) = s 3 – 3s 2 – 20s + 43 = 0

For this cubic, following the standard method,
y = s, p = –3, q = –20, r = 43

a = 1
3

(–60 – 9) = –23

b = 1
27

 (–54 – 540 + 1161) = 21

cos f = 
( )

( )1/ 2

21
2

12167
27

−

\ f = –119° 40
The solutions are

s1 = y1 = 4.25 + 1 = 5.25 kPa
s2 = y2 = –5.2 + 1 = – 4.2 kPa
s3 = y3 = 0.95 + 1 = 1.95 kPa

Renaming such that  s1 ≥ s2 ≥ s3 we have,
s1 = 5.25 kPa, s2 = 1.95 kPa, s3 = – 4.2 kPa

The stress invariants are
l1 = 5.25  + 1.95 – 4.2 = 3.0
l2 = (5.25 ¥ 1.95) – (1.95 ¥ 4.2) – (4.2 ¥ 5.25) = –20
l3 = – (5.25 ¥ 1.95 ¥ 4.2) = – 43

These agree with their earlier values.

Example 1.5 With respect to the frame of reference Oxyz, the following state of
 stress exists. Determine the principal stresses and their associated directions. Also,
check on the invariances of  l1, l2, l3.
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[tij] = 
1 2 1
2 1 1
1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Solution For this state
l1 = 1 + 1 + 1 = 3
l2 = (1 – 4) + (1 – 1) + (1 – 1) = –3
l3 = 1(1 – 1) – 2(2 –  1) + 1(2 – 1) = –1

f (s) = s 3 – l1 s 2 + l2 s – l3 = 0
i.e., s 3 – 3s 2 – 3s + 1 = 0
or (s 3 + 1) – 3s (s + 1) = 0
i.e., (s + 1) (s 2 – s + 1) – 3s (s + 1) = 0
or (s + 1) (s 2 – 4s + 1) = 0
Hence, one solution  is s = –1.  The other two solutions are obtained from the
solution of the quadratic equation, which are s = 2 ± 3 .

\ s1 = –1, s2 = 2 + 3 ,  s3 = 2 – 3
Check on the invariance:
With the set of axes chosen along the principal axes, the stress matrix will have
the form

[t ij] 

1 0 0

0 2 3 0

0 0 2 3

−⎡ ⎤
⎢ ⎥

= +⎢ ⎥
⎢ ⎥−⎣ ⎦

Hence, l1 = –1 + 2 + 3  + 2 – 3  = 3

l2 = (–2 – 3 ) + (4 – 3) + (–2 + 3 ) = –3
l3 = –1 (4 – 3) = –1

Directions of principal axes:
(i) For  s1 = –1, from Eqs (1.18) and (1.21)

(1 + 1)nx + 2ny + nz = 0
2nx + (1 + 1)ny + nz = 0

nx + ny + (1 + 1)nz = 0
together with

2 2 2
x y zn n n+ + = 1

From the second and third equations above, nz = 0. Using this in the third

and fourth equations and solving, nx = ( )1/ 2± , ny = ( )1/ 2± .

Hence, s1 = –1  is in the direction ( )1/ 2, 1/ 2, 0+ − .
It should be noted that the plus and minus signs associated with nx, ny
and nz represent the same line.
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(ii) For s2 = 2 + 3

(–1 – 3 )nx + 2ny + nz = 0

2nx + (–1 – 3 )ny + nz = 0

nx + ny (–1 – 3 )nz = 0

together with
2 2 2
x y zn n n+ + = 1

Solving, we get

( )
1/ 2

1/ 2
1 11
3 3 3

⎛ ⎞
= = + =⎜ ⎟⎝ ⎠ +

x y zn n n

(iii) For s3 = 2 – 3
We can solve for nx, ny and nz in a manner similar to the preceeding one
or get the solution from the condition that n1, n2 and n3 form a right-
angled triad, i.e. n3 = n1 ¥ n2.
The solution is

1/ 2 1/ 2
1 1 1 11 , 12 3 2 3
⎛ ⎞ ⎛ ⎞

= = − − = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠x y zn n n

Example 1.6 For the given state of stress, determine the principal stresses and their
directions.

[tij] = 
0 1 1
1 0 1
1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Solution l1 = 0, l2 = –3, l3 = 2
  f (s) = –s 3 + 3s + 2 = 0

= (–s 3 – 1) + (3s + 3)
= –(s + 1) (s 2 – s + 1) + 3(s + 1)
= (s + 1) (s – 2) (s + 1) = 0

\ s1 = s2 = –1 and s3 = 2

Since two of the three principal stresses are equal, and s3 is different, the axis of
s3 is unique and every direction perpendicular to s3 is a principal direction asso-
ciated with s1 = s2. For s3 = 2

–2nx + ny + nz = 0
nx – 2ny + nz = 0
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nx + ny – 2nz = 0
2 2 2
x y zn n n+ + = 1

These give nx = ny = nz = 
1
3

Example 1.7 The state of stress at a point is such that

sx = sy = sz = txy = tyz = tzx = r

Determine the principal stresses and their directions

Solution For the given state,

l1 = 3r, l2 = 0, l3 = 0

Therefore the cubic is s 3 – 3rs 2 = 0; the solutions are s1 = 3r, s2 =
s3 = 0. For s1 = 3r

( r – 3r)nx + rny + rnz = 0
rnx + (r – 3p) ny + rnz = 0
rnx + rny + (r – 3r) nz = 0

or
–2nx + ny + nz = 0
nx – 2ny + nz = 0
nx + ny – 2nz = 0

The above equations give
nx = ny = nz

With  2 2 2 1x y zn n n+ + = , one  gets 1/ 3x y zn n n= = = .
Thus, on a plane that is equally inclined to xyz axes, there is a tensile stress of

magnitue 3r. This is the case of a uniaxial tension, the axis of loading making
equal angles with the given xyz axes. If one denotes this loading axis by z¢, the
other two axes, x¢ and y¢, can be chosen arbitrarily, and the planes normal to
these, i.e. x¢ plane and y¢ plane, are stress free.

1.16 THE STATE OF STRESS REFERRED
TO PRINCIPAL AXES

In expressing the state of stress at a point by the six rectangular stress compo-
nents, we can choose the principal axes as the coordinate axes and refer the
rectangular stress components accordingly. We then have for the stress matrix

1

2

3

0 0
[ ] 0 0

0 0
ij

σ
τ σ

σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

(1.30)
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On any plane with normal n, the components of the stress vector are, from
Eq. (1.9),

1 2 3, ,
n n n

x x y y z zn n nσ σ σ= = =T T T (1.31)

The resultant stress has a magnitutde
2

2 2 2 2 2 2
1 2 3

n
x y zn n nσ σ σ= + +T (1.32)

If s is the normal and t the shearing stress on this plane, then

s = 2 2 2
1 2 3x y zn n nσ σ σ+ + (1.33)

and t 2 = 
2

2n
σ−T (1.34)

   2 2 2 2 2 2 2 2 2
1 2 2 3 3 1( ) ( ) ( )x y y z z xn n n n n nσ σ σ σ σ σ= − + − + −

The stress invariants assume the form

l1 = s1 + s2 + s3 (1.35)
l2 = s1s2 + s2s3 + s3s1
l3 = s1s2s3

1.17 MOHR’S CIRCLES FOR THE THREE-DIMENSIONAL
STATE OF STRESS

We shall now describe a geometrical construction that brings out some
important results. At a given point P, let the frame of reference Pxyz be
chosen along the principal stress axes. Consider a plane with normal n at
point P. Let s be the normal stress and t the shearing stress on this plane.
Take another set of axes s and t. In this plane we can mark a point Q with
co-ordinates (s, t ) representing the values of the normal and shearing
stress on the plane n. For different planes passing through point P, we get
different values of s and t. Corresponding to each plane n, a point Q can
be located  with  coordinates (s, t ). The  plane with the s axis and the t
axis is called the stress plane p. (No numerical value  is associated with
this symbol). The problem now is to determine the bounds for Q (s, t) for
all possible directions n.

Arrange the principal stresses such that algebraically
s1 ≥ s2 ≥ s3

Mark off s1, s2 and s3 along the s axis and construct three circles with
diameters (s1 – s2), (s2 – s3) and (s1 – s3) as shown in Fig. 1.16.

It will be shown in Sec. 1.18 that the point Q(s, t) for all possible n will lie
within the shaded area. This region is called Mohr’s stress plane p and the three
circles are known as Mohr’s circles. From Fig. 1.16, the following points can be
observed:

(i) Points A, B and C represent the three principal stresses and the associated
shear stresses are zero.
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(ii) The maximum shear stress is equal to 1
2 (s1 – s3) and the associated nor-

mal stress is 1
2 (s1 + s3). This is indicated by point D on the outer circle.

(iii) Just as there are three extremum values s1, s2 and s3 for the normal
stresses, there are three extremum values for the shear stresses, these
being  1 3

2
σ σ− , 2 3

2
σ σ−  and 1 2

2
σ σ− . The planes on which these shear

stresses act are called the principal shear planes. While the planes on
which the principal normal stresses act are free of shear stresses, the
principal shear planes are not free from normal stresses. The normal stresses

associated with the principal shears are respectively 1 3 2 3,2 2
σ σ σ σ+ +

and 1 2

2
σ σ+ . These are indicated by points D, E and  F in Fig. 1.16. It will be

shown in Sec. 1.19 that the principal shear planes are at 45° to the principal
normal planes. The principal shears are denoted by t1, t2 and t3 where

3 1 2 2 1 3 1 2 32 ( ), 2 ( ), 2 ( )τ σ σ τ σ σ τ σ σ= − = − = − (1.36)

(iv) When  s1 = s2 π s3 or s1 π s2 = s3, the three circles reduce to only one

circle and the shear stress on any plane will not exceed 1
2

(s1 – s3) or
1
2

(s1 – s2) according as s1 = s2 or s2 = s3.

(v) When s1 = s2 = s3, the three circles collapse to a single point on the s
axis and every plane is a shearless plane.

1.18 MOHR’S STRESS PLANE
It was stated in the previous section that when points with coordinates (s, t ) for
all possible planes passing through a point are marked on the s – t plane, as in
Fig. 1.16, the points are bounded by the three Mohr’s circles. In this, section we
shall prove this.

t
D

p

E
Q(s, t)

*

C B F A ss3
s2 s10

Fig. 1.16 Mohr's stress plane
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Choose the coordinate frame of reference Pxyz such that the axes are along the
principal axes. On any plane with normal n, the resultant stress vector 

n
T  and the

normal stress s are such that from Eqs (1.32) and (1.33)
2n

T  = s 2 + t 2 = 2 2 2 2 2 2
1 2 3x y zn n nσ σ σ+ + (1.37)

s = 2 2 2
1 2 3x y zn n nσ σ σ+ + (1.38)

and also 1 = 2 2 2
x y zn n n+ + (1.39)

The above three equations can be used to solve for 2 2,x yn n  and 2
zn  yielding

( ) ( )
( ) ( )

2
2 32

1 2 1 3
xn

σ σ σ σ τ
σ σ σ σ
− − +

=
− − (1.40)

( )( )
( )( )

2
3 12

2 3 2 1
yn

σ σ σ σ τ
σ σ σ σ
− − +

=
− −

(1.41)

( )( )
( )( )

2
1 22

3 1 3 2
zn

σ σ σ σ τ
σ σ σ σ
− − +

=
− −

(1.42)

Since 2 2,x yn n  and 2
zn  are all positive, the right-hand side expressions in the above

equations must all be positive. Recall that we have arranged the principal stresses
such that s1 ≥ s2 ≥ s3. There are three cases one can consider.

Case (i) s1 > s2 > s3

Case (ii) s1 = s2 > s3

Case (iii) s1 = s2 = s3

We shall consider these cases individually.
Case (i)  s1 > s2 > s3

For this case, the denominator in Eq. (1.40) is positive and hence, the numerator
must also be positive. In Eq. (1.41), the denominator being negative, the numera-
tor must also be negative. Similarly, the numerator in  Eq. (1.42) must be posi-
tive. Therefore.

(s – s2)(s – s3) + t 2 ≥ 0
(s – s3)(s – s1) + t 2 £ 0
(s – s1)(s – s2) + t 2 ≥ 0

The above three inequalities can be rewritten as

2 2
2 2 3 2 3

2 2
σ σ σ σ

τ σ
+ −⎛ ⎞ ⎛ ⎞+ − ≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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2 2
2 3 1 3 1

2 2
σ σ σ σ

τ σ
+ −⎛ ⎞ ⎛ ⎞+ − ≤⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
2 1 2 1 2

2 2
σ σ σ σ

τ σ
+ −⎛ ⎞ ⎛ ⎞+ − ≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

According to the first of the above equations, the point (s, t ) must lie on or

outside a circle of radius 1
2

(s2 – s3) with its centre at 1
2

(s2 + s3)  along the s axis

(Fig. 1.16). This is the circle with BC as diameter. The second equation indicates

that the point (s, t) must lie inside or on the circle ADC with radius 1
2

(s1 – s3)

and centre at 1
2

(s1 + s3) on the s axis. Similarly, the last equation indicates that

the point (s, t) must lie on or outside the circle AFB with radius equal to 1
2

(s1 – s2)

and centre at 1
2

(s1 + s2).

Hence, for this case, the point Q(s, t) should lie inside the shaded area of Fig. 1.16.

Case (ii) s1 = s2 > s3
Following arguments similar to the ones given above, one has for this case from
Eqs (1.40)–(1.42)

2 2
2 2 3 2 3

2 2
σ σ σ σ

τ σ
+ −⎛ ⎞ ⎛ ⎞+ − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
2 3 1 3 1

2 2
σ σ σ σ

τ σ
+ −⎛ ⎞ ⎛ ⎞+ − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
2 1 2 1 2

2 2
σ σ σ σ

τ σ
+ −⎛ ⎞ ⎛ ⎞+ − ≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

From the first two of these equations, since s1 = s2, point (s, t ) must lie on the

circle with radius 1
2

(s1 – s3) with its centre at 1
2

(s1 + s3).  The last equation

indicates that the point must lie outside a  circle of zero radius  (since s1 = s2).
Hence, in this case, the Mohr’s circles will reduce to a circle BC and a point circle
B. The point Q lies on the circle BEC.
Case (iii) s1 = s2 = s3
This is a trivial case since this is the isotropic or the hydrostatic state of stress.
Mohr’s circles collapse to  a single point on the s axis.

See Appendix 1 for the graphical determination of the normal and shear stresses
on an arbitrary plane, using Mohr’s circles.

1.19 PLANES OF MAXIMUM SHEAR

From Sec. 1.17 and also from Fig. 1.16 for the case s1 > s2 > s3, the  maximum
shear stress is 1

2
(s1 – s3) = t2 and the associated normal stress is 1

2
(s1 + s3).
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Substituting these values in Eqs.(1.37)–(1.39) in Sec. 1.18, one gets nx = ± 1/2 ,
ny = 0 and nz = ±1 2. This means that the planes (there are two of them)
on which the shear stress takes on an extremum value, make angles of 45°
and 135° with the  s1 and s2 planes as shown in Fig. 1.17.

If s1 = s2 > s3, then the three Mohr’s circles reduce to one circle BC (Fig.1.16)

and the maximum shear stress will be 1
2

(s2 – s3) = t1, with the associated normal

stress 1
2

(s2 + s3). Substituting these values in Eqs (1.37)–(1.39), we get nx = 0/0,

ny = 0/0 and nz = ±1 2 i.e. nx and ny are indeterminate. This means that the
planes on which t1 is acting makes angles of 45° and 135° with the  s3 axis
but remains indeterminate with respect to s1 and s2 axes. This is so be-
cause, since s1 = s2 π s3, the axis of s3 is unique, whereas, every direction
perpendicular to s3 is a principal direction associated with s1 = s2 (Sec.
1.14). The principal shear plane will, therefore, make a fixed angle with s3

axis (45° or 135°) but will have different values depending upon the selec-
tion of s1 and s3 axes.

1.20 OCTAHEDRAL STRESSES

Let the frame of reference be again chosen along s1, s2 and s3 axes. A plane that

( a ) ( b )

Fig. 1.17 (a) Principal planes (b) Planes of maximum shear

s2 s2

s1

1/2 (s 1 + s 3)

s3

t2

1/2 (s1 + s3)

Fig.1.18 Octahedral planes

s2

s3

s1s1

s3

s2

is equally inclined to these three axes is called
an octahedral plane. Such a plane will have nx =
ny = nz. Since 2 2 2 1x y zn n n+ + = , an octahedral
plane will be defined by nx = ny = nz 1/ 3= ± .
There are eight such planes, as shown in
Fig.1.18.

The normal and shearing stresses on these
planes are called the octahedral normal stress
and octahedral shearing stress respectively.
Substituting nx = ny = nz = ±1/ 3  in Eqs (1.33)
and (1.34),
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soct = 1
3

(s1 + s2 + s3) = 1
3

 l1 (1.43)

and 2
octτ = 1

9
[(s1 – s2)2 + (s2 – s3)2 + (s3 – s1)2] (1.44a)

or 2
oct9τ = 2(s1 + s2 + s3)2 – 6(s1s2 + s2s3 + s3s1) (1.44b)

or toct = 2 1/ 2
1 2

2 ( 3 )
3

l l− (1.44c)

It is important to remember that the octahedral planes are defined with respect
to the principal axes and not with reference to an arbitrary frame of reference.
Since soct and toct have been expressed in terms of the stress invariants, one can
express these in terms of sx, sy, sz, txy, tyz and tzx also. Using Eqs (1.22) and (1.23),

soct = 1
3

 (sx + sy + sz) (1.45)

2
oct9τ = (sx – sy)2 + (sy – sz)2 + (sz – sx)2 + ( )2 2 26 xy yz zxτ τ τ+ + (1.46)

The octahedral normal stress being equal to 1/3 l1, it may be interpreted as the
mean normal stress at a given point in a body. If in a state of stress, the first
invariant (s1 + s2 + s3) is zero, then the normal stresses on the octahedral planes
will be zero and only the shear stresses will act. This is important from the point
of view of the strength and failure of some materials (see Chapter 4).

Example 1.8 The state of stress at a point is characterised by the components
sx = 100 MPa, sy = –40 MPa, sz = 80 MPa,
txy = tyz = tzx = 0

Determine the extremum values of the shear stresses, their associated normal
stresses, the octahedral shear stress and its associated normal stress.

Solution The given stress components are the principal stresses, since the
shears are zero. Arranging the terms such that s1 ≥ s2 ≥ s3,

s1 = 100 MPa, s2 = 80 MPa, s3 = –40 MPa
Hence from Eq. (1.36),

t1 = 2 3 80 40 60 MPa
2 2

σ σ− += =

t2 = 3 1 40 100 70 MPa
2 2

σ σ− − −= = −

t3 = 1 2 100 80 10 MPa
2 2

σ σ− −
= =

The associated normal stresses are

*
1σ = 2 3 80 40 20 MPa

2 2
σ σ+ −= =
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*
2σ = 3 1 40 100 30 MPa

2 2
σ σ+ − +

= =

*
3σ = 1 2 100 80 90 MPa

2 2
σ σ+ +

= =

toct = ( ) ( ) ( )
1/ 22 22

1 2 2 3 3 1
1 61.8 MPa
3

σ σ σ σ σ σ⎡ ⎤− + − + − =
⎣ ⎦

soct = ( )1 2 3
1 140 46.7 MPa
3 3
σ σ σ+ + = =

1.21 THE STATE OF PURE SHEAR
The state of stress at a point can be characterised by the six rectangular stress
components referred to a coordinate frame of reference. The magnitudes of these
components depend on the choice of the coordinate system. If, for at least one
particular choice of the frame of reference, we find that sx = sy = sz = 0, then a state
of pure shear is said to exist at point P. For such a state, with that particular choice
of coordinate system, the stress matrix will be

0

0

0

xy xz

ij xy yz

xz yz

τ τ

τ τ τ

τ τ

⎡ ⎤
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

For this coordinate system, l1 = sx + sy + sz = 0. Since l1 is an invariant, this
must be true for any choice of coordinate system selected at P. Hence, the neces-
sary condition for a state of pure shear to exist is that l1 = 0, It can be shown
(Appendix 2) that this is also a sufficient condition.

It was remarked in the previous section that when l1 = 0, an octahedral plane
is subjected to pure shear with no normal stress. Hence, for a pure shear stress
state, the octahedral plane (remember that this plane is defined with respect to
the principal axes and not with respect to an arbitrary set of axes) is free from
normal stress.

1.22 DECOMPOSITION INTO HYDROSTATIC
AND PURE SHEAR STATES

It will be shown in the present section that an arbitrary state of stress can be
resolved into a hydrostatic state and a state of pure shear. Let the given state
referred to a coordinate system be

[tij] = 

x xy xz

xy y yz

xz yz z

σ τ τ

τ σ τ

τ τ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Let p = 1/3(sx + sy + sz) = 1/3l1 (1.47)
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The given state can be resolved into two different states, as shown:

0 0
0 0
0 0

x xy xz x xy xz

xy y yz xy y yz

xz yz z xz yz z

pp
p p

p p

σ τ τ σ τ τ

τ σ τ τ σ τ

τ τ σ τ τ σ

⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= + −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(1.48)

The first state on the right-hand side of the above equation is a hydrostatic
state. [Refer Sec. 1.14(iii).]

The second state is a state of pure shear since the first invariant for this
state is

l¢1 = (sx – p) + (sy – p) + (sx – p)
= sx + sy + sz – 3p
= 0 from Eq. (1.47)

If the given state is referred to the principal axes, the decomposition into a hydro-
static state and a pure shear state can once again be done as above, i.e.

1 1

2 2

3 3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

p p
p p

p p

σ σ
σ σ

σ σ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= + −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

(1.49)

where, as before, p = 1/3(s1 + s2 + s3) = 1/3l1.
The pure shear state of stress is also known as the deviatoric state of stress or

simply as stress deviator.

Example 1.9 The state of stress characterised by tij is given below. Resolve
the given state into a hydrostatic state and a pure shear state. Determine the normal
and shearing stresses on an octahedral plane. Compare these with the soct and toct
calculated for the hydrostatic and the pure shear states. Are the octahedral
planes for the given state, the hydrostatic state and the pure shear state the same or
are they different? Explain why.

[tij] = 
10 4 6
4 2 8
6 8 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Solution  l1 = 10 + 2 + 6 = 18, 1
3

l1 = 6

Resolving into hydrostatic and pure shear state, Eq. (1.47),

[tij] = 
6 0 0 4 4 6
0 6 0 4 4 8
0 0 6 6 8 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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For the given state, the octahedral normal and shear stresses are:

soct = 1
3

 l1 = 6

From Eq. (1.44)

toct = ( )1/ 22 2
1 2

2 3
3

l l−

( )
1/ 222 18 3 20 16 12 64 60 36

3
⎡ ⎤= − − + − + −⎣ ⎦

( )1/ 22 396 2 22
3

= =

For the hydrostatic state, soct = 6, since every plane is a principal plane with s = 6
and consequently, toct = 0.

For the pure shear state, soct = 0 since the first invariant of stress for the pure
shear state is zero. The value of the second invariant of stress for the pure shear
state is

l¢2 = (–16 – 16 + 0 – 64 + 0 – 36 ) = –132

Hence, the value of toct for the pure shear state is

toct = ( )1/ 22 396 2 22
3

=

Hence, the value of soct for the given state is equal to the value of soct for the
hydrostatic state, and toct for the given state is equal to toct for the pure shear state.

The octahedral planes for the given state (which are identified after determining
the principal stress directions), the hydrostatic state and the pure shear state are
all identical. For the hydrostatic state, every direction is a principal direction, and
hence, the principal stress directions for the given state and the pure shear state
are identical. Therefore, the octahedral planes corresponding to the given state
and the pure shear state are identical.

Example 1.10 A cylindrical boiler, 180 cm in diameter, is made of plates 1.8 cm thick,
and is subjected to an internal pressure 1400 kPa. Determine the maximum shearing

pd/4t

pd/2t
p

Fig. 1.19 Example 1.10

stress in the plate at point P and the plane
on which it acts.

Solution From elementary strength of
materials, the axial stress in the plate is

4
pd

t
 where p is the internal pressure, d

the diameter and t the thickness. The cir-

cumferential or the hoop stress is 
2
pd

t
.

The state of stress acting on an element
is as shown in Fig. 1.19.

P
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The principal stresses when arranged such that s1 ≥ s2 ≥ s3 are

1 2 3; ; –
2 4
pd pd p

t t
σ σ σ= = =

The maximum shear stress is therefore,

( ) ( )max 1 3
1 1 1
2 2 2

dp
t

τ σ σ= − = +

Substituting the values

max
1.8 1001400 1 35,700 kPa

2 2 1.8
τ ×⎛ ⎞= + =⎜ ⎟×⎝ ⎠

1.23 CAUCHY’S STRESS QUADRIC
We shall now describe a geometrical description of the state of stress at a point P.
Choose a frame of reference whose axes are along the principal axes. Let s1, s2
and s3 be the principal stresses. Consider a plane with normal n. The normal
stress on this plane is from Eq. (1.33),

s = 2 2 2
1 2 3x y zn n nσ σ σ+ +

Along the normal n to the plane, choose a point Q such that

PQ = R = 1 σ  (1.50)

As different planes n are chosen at P, we get different values for the normal
stress s and correspondingly different PQs. If such Qs are marked for every plane
passing through P, then we get a surface S. This surface determines the normal
component of stress on every plane passing through P. This surface is known as

mS

Q

R
n

P

( a )

( b )

n
T

n
T

Fig. 1.20 (a) Cauchy’s stress quadric
(b) Resultant stress vector and
normal stress component

the stress surface of Cauchy. This
has a very interesting property. Let
Q be a point on the surface,
Fig. 1.20(a). By the previous defini-
tion, the length PQ = R is such that
the normal stress on the plane whose
normal is along PQ is given by

2
1

R
σ = (1.51)

If m is a normal to the tangent
plane to the surface S at point Q,
then this normal m is parallel to the
resultant stress vector

n
T  at P.

Since the direction of the result-

ant vector 
n
T  is known, and its component s along the normal is known, the

resultant stress vector 
n
T  can be easily determined, as shown in Fig. 1.20(b).
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We shall now show that the normal m to the surface S is parallel to 
n
T , the

resultant stress vector. Let Pxyz be the principal axes at P (Fig. 1.21). n is the
normal to a particular plane at P. The normal stress on this plane, as before, is

2 2 2
1 2 3x y zn n nσ σ σ σ= + +

when s is tensile
s1x

2 + s2 y2 + s3z
2 = +1 (1.53a)

when s is compressive

s1x
2 + s2 y2 + s3z

2 = –1 (1.53b)

We know from calculus that for a surface with equation F(x, y, z) = 0, the
normal to the tangent plane at a point Q on the surface has direction cosines

proportional to ,F F
x y

∂ ∂
∂ ∂

 and F
z

∂
∂

. From Fig. (1.20), m is the normal perpendicular

to the tangent plane to S at Q. Hence, if mx, my, and mz are the direction cosines of
m, then

, ,x y z
F F Fm m m
x y z

∂ ∂ ∂α α α
∂ ∂ ∂

= = =

From Eq. (1.53a) or Eq. (1.53b)
mx = 2as1x, my = 2as2y, mz = 2as3z (1.54)

where a is a constant of proportionality.
n
T  is the resultant stress vector on plane n and its components ,

n n
x yT T , and

n
zT  according to Eq. (1.31), are

1 1 3, ,
n n n
x x y y z zσ σ σ= = =T n T n T n

Substituting for nx, ny and nz from Eq. (1.52)

1 2 3
1 1 1, ,

n n n
x y zx y z

R R R
σ σ σ= = =T T T

If the coordinates of the point Q are
(x, y, z) and the length PQ = R, then

, ,x y z
yx zn n n

R R R
= = =  (1.52)

Substituting these in the above equa-
tion for s

s R2 = s1x
2 + s2 y2 + s3z

2

From Eq. (1.51), we have sR2 = ±1. The
plus sign is used when s is tensile and the
minus sign is used when s is compressive.
Hence, the surface S has the equations
(a surface of second degree)

y

R
Q (x, y, z)

n

P x

z
Fig. 1.21 Principal axes at P and

n to a plane
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or  1 2 3, ,
n n n

x y zx R y R z Rσ σ σ= = =T T T

Substituting these in Eq. (1.54)

2 , 2 , 2
n n n

x y zx y zm R m R m Rα α α= = =T T T

i.e. mx, my and mz are proportional to ,
n n

x yT T  and 
n

zT .

Hence, m and 
n
T  are parallel.

The stress surface of Cauchy, therefore, has the following properties:

(i) If Q is a point on the stress surface, then PQ =1/ σ  where s is the
normal stress on a plane whose normal is PQ.

(ii) The normal to the surface at Q is parallel to the resultant stress vector 
n
T

on the plane with normal PQ.
Therefore, the stress surface of Cauchy completely defines the state of stress

at P. It would be of interest to know the shape of the stress surface for different
states of stress. This aspect will be discussed in Appendix 3.

1.24 LAME’S ELLIPSOID
Let Pxyz be a coordinate frame of reference at point P, parallel to the principal
axes at P. On a plane passing through P with normal n, the resultant stress vector
is 

n
T  and its components, according to Eq. (1.31), are

1 2 3, ,
n n n

x y zx y zn n nσ σ σ= = =T T T

Let PQ be along the resultant stress vector and its length be equal to its
magnitude, i.e. | |

n
PQ= T . The coordinates (x, y, z) of the point Q are then

, ,
n n n

x y zx y z= = =T T T

Since 2 2 2
x y zn n n+ +  = 1, we get from the above two equations.

22 2

2 2 2
1 2 3

1yx z
σ σ σ

+ + = (1.55)

Fig. 1.22 Lame’s ellipsoid

y

n Q

z n

P

Q n
T

x

This is the equation of an
ellipsoid referred to the princi-
pal axes. This ellipsoid is called
the stress ellipsoid or Lame's
ellipsoid. One of its three semi-
axes is the longest, the other
the shortest, and the third in-
between (Fig.1.22). These are
the extermum values.

If two of the principal
stresses are equal, for instance
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s1 = s2, Lame’s ellipsoid is an ellipsoid of revolution and the state of stress at a
given point is symmetrical with respect to the third principal axis Pz. If all the
principal stresses are equal, s1 = s2 = s3, Lame's ellipsoid becomes a sphere.

Each radius vector PQ of the stress ellipsoid represents to a certain scale, the
resultant stress on one of the planes through the centre of the ellipsoid. It can be
shown (Example 1.11) that the stress represented by a radius vector of the stress
ellipsoid acts on the plane parallel to tangent plane to the surface called the
stress-director surface, defined by

22 2

1 2 3
1yx z

σ σ σ
+ + = (1.56)

The tangent plane to the stress-director surface is drawn at the point of intersec-
tion of the surface with the radius vector. Consequently, Lame’s ellipsoid and the
stress-director surface together completely define the state of stress at point P.

Example 1.11 Show that Lame’s ellipsoid and the stress-director surface together
completely define the state of stress at a point.

Solution If s1, s2 and s3 are the principal stresses at a point P, the equation of
the ellipsoid referred to principal axes is given by

22 2

2 2 2
1 2 3

1yx z
σ σ σ

+ + =

The stress-director surface has the equation
22 2

1 2 3
1yx z

σ σ σ
+ + =

It is known from analytical geometry that for a surface defined by
F(x, y, z) = 0, the normal to the tangent at a point (x0, y0, z0 ) has direction cosines

proportional to , ,F F F
x y z

∂ ∂ ∂
∂ ∂ ∂

, evaluated at (x0, y0, z0). Hence, at a point (x0, y0, z0)

on the stress ellipsoid, if m is the normal to the tangent plane (Fig.1.23), then

0 0 0

1 2 3
, ,x y z

x y z
m m mα α α

σ σ σ
= = =

n parallel to m

P

m
L
(x0, y0, z0)

Q

St ress-d i rec to r
S u r f a c e

Ellipsoid Surface

Fig. 1.23 Stress director surface and ellipsoid surface
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Consider a plane through P with normal parallel to m. On this plane, the resultant
stress vector will be 

n
T  with components given by

1 2 3; ;
m m m

x y zx y zm m mσ σ σ= = =T T T

Substituting for mx, my and mz

0 0 0, ,
m m m

x y zx y zα α α= = =T T T

i.e. the components of stress on the plane with normal m are proportional to the
coordinates (x0, y0, z0). Hence the stress-director surface has the following property.

L(x0, y0, z0) is a point on the stress-director surface. m is the normal to the
tangent plane at L. On a plane through P with normal m, the resultant stress
vector is 

m
T  with components proportional to x0, y0 and z0. This means that the

components of PL are proportional to ,
m m

x yT T  and 
m

zT .

PQ being an extension of PL and equal to 
n
T  in magnitude, the plane having

this resultant stress will have m as its normal.

1.25 THE PLANE STATE OF STRESS
If in a given state of stress, there exists a coordinate system Oxyz such that for
this system

sz = 0, txz = 0, tyz = 0 (1.57)

then the state is said to have a ‘plane state of stress’ parallel to the xy plane. This
state is also generally known as a two-dimensional state of stress. All the forego-
ing discussions can be applied and the equations reduce to simpler forms as a
result of Eq. (1.57). The state of stress is shown in Fig. 1.24.

sy

sx sx

txy

txy

sy

sx

txy

sy

txy

sx

sy

( a ) ( b )

Fig. 1.24 (a) Plane state of stress (b) Conventional representation

Consider a plane with the normal lying in the xy plane. If nx, ny and nz are
the direction cosines of the normal, we have nx = cos q, ny = sin q and nz = 0
(Fig. 1.25). From Eq. (1.9)
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n
xT = sx cos q + txy sin q

n
yT = sy sin q + txy cos q (1.58)

n
zT = 0

The normal and shear stress components on this plane are from Eqs (1.11a)
and (1.11b)

s = sx cos2 q + sy sin2 q + 2txy sin q cos q

2 2
x y x yσ σ σ σ+ −

= +  cos 2q + tx y sin 2q (1.59)

and t 2 = 2 2 2
n n

x y σ+ −T T

or t = 
2

x yσ σ−
 sin 2q + tx y cos 2q (1.60)

The principal stresses are given by Eq. (1.29) as

s1, s2 = 

1/ 22
2

2 2
x y x y

xy
σ σ σ σ

τ
⎡ ⎤+ −⎛ ⎞⎢ ⎥± +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(1.61)

s3 = 0
The principal planes are given by

(i) the z plane on which s3 = sz = 0 and
(ii) two planes with normals in the xy plane such that

2
tan 2 xy

x y

τ
φ

σ σ
=

−
(1.62)

The above equation gives two planes at right angles to each other.
If the principal stresses s1, s2 and s3 are arranged such that s1 ≥ s2 ≥ s3, the

maximum shear stress at the point will be

1 3
max 2

σ σ
τ

−
= (1.63a)

sy

txy

n
sx

txy

sy

sx

sx

t s
n

txy

sy

(a) (b)

Fig. 1.25 Normal and shear stress components on an oblique plane

q q
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In the xy plane, the maximum shear stress will be

( )max 1 2
1
2

τ σ σ= − (1.63b)

and from Eq. (1.61)
1/ 22

2
max 2

x y
xy

σ σ
τ τ

⎡ ⎤−⎛ ⎞⎢ ⎥= +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(1.64)

1.26 DIFFERENTIAL EQUATIONS OF EQUILIBRIUM
So far, attention has been focussed on the state of stress at a point. In general, the
state of stress in a body varies from point to point. One of the fundamental prob-
lems in a book of this kind is the determination of the state of stress at every point
or at any desired point in a body. One of the important sets of equations used in the
analyses of such problems deals with the conditions to be satisfied by the stress

( a )

( b )

Fig. 1.26 Isolated cubical element
    in equilibrium

components when they vary
from point to point. These con-
ditions will be established when
the body (and, therefore, every
part of it) is in equillibrium. We
isolate a small element of the
body and derive the equations
of equilibrium from its free-
body diagram (Fig. 1.26). A simi-
lar procedure was adopted in
Sec. 1.8 for establishing the
equality of cross shears.

Consider a small rectangu-
lar element with sides Dx, Dy
and Dz isolated from its par-
ent body. Since in the limit, we
are going to make Dx, y and Dz
tend to zero, we shall deal with
average values of the stress
components on each face.
These stress components are
shown in Fig. 1.27.

The faces are marked as 1, 2, 3
etc. On the left hand face, i.e. face
No. 1, the average stress com-
ponents are sx, txy and txz. On
the right hand face, i.e. face
No. 2, the average stress com-
ponents are

Fig. 1.27 Variation of stresses

y
y + Dsy

4 sz

5

2 sx + Dsx

x

1

6

3sz +Dsz

z sy

sx

, ,xyx xz
x xy xzx x x

x x x
∂τ∂σ ∂τ

σ τ τ
∂ ∂ ∂

+ ∆ + ∆ + ∆
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This is because the right hand face is Dx distance away from the left hand face.
Following a similar procedure, the stress components on the six faces of the
element are as follows:
Face 1 , ,x xy xzσ τ τ

Face 2 , ,xyx xz
x xy xzx x x

x x x
∂τ∂σ ∂τ

σ τ τ
∂ ∂ ∂

+ ∆ + ∆ + ∆

Face 3 , ,y yx yzσ τ τ

Face 4

, ,y yx yz
y yx yzy y y

y y y
∂σ ∂τ ∂τ

σ τ τ
∂ ∂ ∂

+ ∆ + ∆ + ∆

Face 5 , ,z zx zyσ τ τ

Face 6 , , zyzxz
z zx zyz z z

z z z
∂τ∂τ∂σ

σ τ τ
∂ ∂ ∂

+ ∆ + ∆ + ∆

Let the body force components per unit volume in the x, y and z directions
be gx, gy, and gz. For equilibrium in x direction

yxx
x x yx yxx y z y z y z x z x

x y
∂τ∂σ

σ σ τ τ
∂ ∂

⎛ ⎞⎛ ⎞+ ∆ ∆ ∆ − ∆ ∆ + + ∆ ∆ ∆ − ∆ ∆ +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

0z x
zx zx xz x y x y x y z

z
∂τ

τ τ γ
∂

⎛ ⎞
+ ∆ ∆ ∆ − ∆ ∆ + ∆ ∆ ∆ =⎜ ⎟

⎝ ⎠
Cancelling terms, dividing by Dx, Dy, Dz and going to the limit, we get

0yxx zx
xx y z

∂τ∂σ ∂τ
γ

∂ ∂ ∂
+ + + =

Similarly, equating forces in the y and z directions respectively to zero, we get
two more equations. On the basis of the fact that the cross shears are equal,
i.e. txy = tyx, tyz = tzy, txz = tzx, we obtain the three differential equations of
equilibrium as

0xyx zx
xx y z

∂τ∂σ ∂τ
γ

∂ ∂ ∂
+ + + =

0y xy yz
yy x z

∂σ ∂τ ∂τ
γ

∂ ∂ ∂
+ + + = (1.65)

0yzxzz
zz x y

∂τ∂τ∂σ
γ

∂ ∂ ∂
+ + + =

Equations (1.65) must be satisfied at all points throughout the volume of the
body. It must be recalled that the moment equilibrium conditions established the
equality of cross shears in Sec.1.8.
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1.27 EQUILIBRIUM EQUATIONS FOR PLANE
STRESS STATE

The plane stress has already been defined. If there exists a plane stress state in
the xy plane, then sz = tzx = tyz = gz = 0 and only sx, sy, txy, gx and gy exist. The
differnetial equations of equilibrium become

0xyx
xx y

∂τ∂σ
γ

∂ ∂
+ + =

0y xy
yy x

∂σ ∂τ
γ

∂ ∂
+ + = (1.66)

Example 1.12 The cross-section of the wall of a dam is shown in Fig. 1.28. The
pressure of water on face OB is also shown. With the axes Ox and Oy, as shown
in Fig. 1.28, the stresses at any point (x, y) are given by (g = specific weight
of water and r = specific weight of dam material)

sx = –g y

sy = 3 2
2

tan tan tan
x yρ γ γ ρ

β β β

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

txy = 2tanyx xγτ
β

= −

tyz = 0, tzx = 0, sz = 0

Check if these stress components satisfy the differ-
ential equations of equilibrium. Also, verify if the
boundary conditions are satisfied on face OB.

Solution The equations of equilibrium are

0xyx
xx y

∂τ∂σ
γ

∂ ∂
+ + =

and 0y xy
yy x

∂σ ∂τ
γ

∂ ∂
+ + =

Substituting and noting that gx = 0 and gy = r, the first equation is satisifed. For
the second equation also

2 2 0
tan tan
γ γρ ρ
β β
− − + =

On face OB, at any y, the stress components are sx = –g y and txy = 0. Hence the
boundary conditions are also satisfied.

Example 1.13 Consider a function f (x, y), which is called the stress function.
If the values of sx , sy and txy are as given below, show that these satisfy the

o x

b

B A

y

Fig 1.28 Example 1.12

differential equations of equilibrium in the absence of body forces.
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2 2 2

2 2, ,x y xy x yy x
∂ φ ∂ φ ∂ φσ σ τ

∂ ∂∂ ∂
= = = −

Solution Substituting in the differential equations of equilibrium
3 3

2 2 0
y x y x
∂ φ ∂ φ

∂ ∂ ∂ ∂
− =

3 3

2 2 0
x y x y
∂ φ ∂ φ

∂ ∂ ∂ ∂
− =

Example 1.14 Consider the rectangular beam shown in Fig. 1.29. According to the
elementary theory of bending, the ‘fibre stress’ in the elastic range due to bending is
given by

3
12

x
MyMy

l bh
σ = − = −

where M is the bending moment which is a function of x. Assume that
sz = tzx = tzy = 0 and also that txy = 0 at the top and bottom, and further, that sy = 0
at the bottom. Using the differential equations of equilibrium, determine txy and sy.
Compare these with the values given in the elementary strength of materials.

Solution From Eq. (1.65)

0xyx xz
x y z

∂τ∂σ ∂τ
∂ ∂ ∂

+ + =

Since txz = 0 and M is a function of x

3
12 0xyy M

x ybh

∂τ∂
∂ ∂

− + =

or
xy

y
∂τ
∂ = 3

12 M y
xbh

∂
∂

Integrating txy = 2
1 23

6 ( )M y c f x c
xbh

∂
∂

+ +

y

x z

y

h /2

h /2

b
Fig. 1.29 Exmaple 1.14
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where f (x) is a function of x alone and c1, c2 are constants. It is given that
txy = 0 at y = ±

2
h

\
2

3
6

4
h M

xbh
∂
∂ = –c1 f (x) – c2

or c1 f (x) + c2 = 3
2

M
bh x

− ∂
∂

\ txy = 
2

2
43 1

2
yM

bh x h
∂ ⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠∂

From elementary strength of materials, we have

txy = / 2h
y

V y dA
lb

′∫

where V = 
x

− ∂Μ
∂

 is the shear force. Simplifying the above expression

txy = 
2

2
2 3
12

4 2
M h by
x b h

∂
∂

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

or txy = 
2

3
43 1

2
yM

bh x h
∂
∂

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

i.e. the same as the expression obtained above.
From the next equilibrium equation, i.e. from

0y xy yz

y x z
∂σ ∂τ ∂τ
∂ ∂ ∂

+ + =

we get y

y
∂σ
∂

= 
2 2

2 2
43 1

2
y M

bh h x
∂
∂

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠

\ sy = 
32

3 42 2
43 ( )

2 3
yM y c F x c

bh x h
∂
∂

⎛ ⎞
− − + +⎜ ⎟⎜ ⎟

⎝ ⎠

where F(x) is a function of x alone. It is given that sy = 0 at y = 
2
h− .

Hence, c3F(x) + c4 = 
2

2
3

2 3
M h

bh x
∂
∂
2

2
1
2

M
b x
∂
∂

=

Substituting

sy = 
32

2 2
43

2 33
yM hy

bh x h
∂
∂

⎛ ⎞
− − −⎜ ⎟⎜ ⎟

⎝ ⎠
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At y =  +h/2, the value of sy is

sy = 
2

2
1 M w
b bx
∂
∂

=

where w is the intensity of loading. Since b is the width of the beam, the stress
will be w/b as obtained above.

1.28 BOUNDARY CONDITIONS
Equation (1.66) must be satisfied throughout the volume of the body. When the
stresses vary over the plate (i.e. the body having the plane stress state), the
stress components sx, sy and txy must be consistent with the externally applied
forces at a boundary point.

Consider the two-dimensional body shown in Fig.1.30. At a boundary point P,
the outward drawn normal is n. Let Fx and Fy be the components of the surface
forces per unit area at this point.

y
Fy

n

P Fx

P1
x

o

(a)

sx

txy

Fy
n

Fx

sy

( b )

Fig. 1.30 (a) Element near a boundary point (b) Free body diagram

Fx and Fy must be continuations of the stresses sx, sy and txy at the boundary.
Hence, using Cauchy’s equations

n
xT = Fx = sxnx + txy ny

n
yT = Fy = syny + txy nx

If the boundary of the plate happens to be parallel to y axis, as at point P1, the
boundary conditions become

Fx = sx and Fy = txy

1.29 EQUATIONS OF EQUILIBRIUM IN CYLINDRICAL
  COORDINATES

Till this section, we have been using a rectangular or the Cartesian frame of
reference for analyses. Such a frame of reference is useful if the body under
analysis happens to possess rectangular or straight boundaries. Numerous problems
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exist where the bodies under discussion possess radial symmetry; for example, a
thick cylinder subjected to internal or external pressure. For the analysis of such
problems, it is more convenient to use polar or cylindrical coordinates. In this
section, we shall develop some equations in cylindrical coordinates.

Consider an axisymmetric body as shown in Fig. 1.31(a). The axis of the
body is usually taken as the z axis. The two other coordinates are r and q,
where q is measured counter-clockwise. The rectangular stress components at
a point P(r, q, z) are

sr , sq , sz , tqr , tq z and tzr

The faces abcd and a¢b¢c¢d¢ have each an area ( )2
rr ∆+  Dq Dr. The average

stresses on these faces (which are assumed to be acting at the mid point of eace
face) are

On face aa¢d¢d
normal stress sr
tangential stresses trz and trq

On face bb¢c¢c

normal stress sr + r rr
∂σ
∂

∆

z

P
z

sz

tzq

trz trq
sq tqz sr

( a )

( b )

Fig. 1.31 (a) Cylindrical coordinates of a point
 (b) Stresses on an element

r

These are shown acting on
the faces of a radial element
at point P in Fig.1.31(b).
sr, sq and sz are called the
radial, circumferential and
axial stresses respectively. If
the stresses vary from point
to point, one can derive the
appropriate differential equa-
tions of equilibrium, as in
Sec. 1.26. For this purpose,
consider a cylindrical ele-
ment having a radial length
Dr with an included angle Dq
and a height Dz, isolated from
the body. The free-body dia-
gram of the element is shown
in Fig.1.32(b). Since the ele-
ment is very small, we work
with the average stresses act-
ing on each face.

The area of the face aa¢d¢d
is r Dq Dz and the area of face
bb¢c¢c is (r + Dr) Dq Dz. The
areas of faces dcc¢d ¢ and abb¢e¢
are each equal to Dr Dz.

q
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tangential stresses and θ
θ

∂τ∂τ
τ τ

∂ ∂
+ ∆ + ∆rrz

r z rr rr r
The changes are because the face bb¢c¢c is Dr distance away from the face aa¢d¢d.

On face dcc¢d¢
normal stress sq
tangential stresses trq and tq z

On face abb¢a

normal stress sq + θ∂σ
θ

∂θ
∆

tangential stresses trq + rθ∂τ
∂θ

 Dq and tq z + zθ∂τ
∂θ

 Dq

The changes in the above components are because the face abb¢a is separated by
an angle Dq from the face dcc¢d¢.

On face a¢b¢c¢d¢
normal stress sz
tangential stresses trz and tq z

On face abcd

normal stress sz + z z
z

∂σ
∂

∆

tangential stresses trz + rz
z

∂τ
∂

 D z and tq z + z zz
θ∂ τ

∂
∆

Let gr , gq and gz be the body force components per unit volume. If the element is
in equilibrium, the sum of forces in r, q and z directions must vanish individually,
Equating the forces in r direction to zero,

( ) 2
∂σ ∂τ

σ θ τ θ∂ ∂
∆⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ∆ + ∆ ∆ ∆ + + ∆ + ∆ ∆⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

r rz
r rz

r
r r r z z r rr z

z

r a Dr
b

d c

Dq
d ¢

a¢

c ¢

b¢

x

y

( a )

y

r

/2

( b )

θσ ′

σ ′r

r

θ
τ ′r

Fig. 1.32 (a) Geometry of cylindrical element (b) Variation of stresses across faces
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( ) sin
2 2r rz
rr z r r r zθ

θσ θ τ θ σ∆ ∆− ∆ ∆ − + ∆ ∆ − ∆ ∆

cos sin
2 2r r z r zθ

θ θ
∂σθ θτ σ θ
∂θ

⎛ ⎞∆ ∆− ∆ ∆ − + ∆ ∆ ∆⎜ ⎟
⎝ ⎠

( )cos 0
2 2

r
r r

rr z r r zθ
θ

∂τ θτ θ γ θ
∂θ

⎛ ⎞ ∆ ∆+ + ∆ ∆ ∆ + + ∆ ∆ ∆ =⎜ ⎟
⎝ ⎠

Cancelling terms, dividing by Dq Dr Dz and going to the limit with Dq, Dr and Dz,
all tending to zero

0rr rz
r rr r r

r z
θ

θ
∂τ∂σ ∂τ

σ σ γ
∂ ∂ ∂θ

+ + + − + =

or 1 0r rr rz
rr z r r

θ θ∂τ σ σ∂σ ∂τ
γ

∂ ∂ ∂θ
−

+ + + + = (1.67)

Similarly, for equilibrium in z and q directions, we get

1 0zrz z rz
zr z r r

θ∂τ∂τ ∂σ τ
γ

∂ ∂ ∂θ
+ + + + = (1.68)

and 21 0r z r
r z r r
θ θ θ θ

θ
∂τ ∂τ ∂σ τ

γ
∂ ∂ ∂θ

+ + + + = (1.69)

Equations (1.67)–(1.69) are the differential equations of equilibrium expressed in
polar coordinates.

1.30 AXISYMMETRIC CASE AND PLANE STRESS CASE
If an axisymmetric body is loaded symmetrically, the stress components do not
depend on q. Since the deformations are symmetric, trq and tq z do not exist and conse-
quently the above set of equations in the absence of body forces are reduced to

0rr rz
r z r

θσ σ∂σ ∂τ
∂ ∂

−
+ + =

0r z z rz
r z r

∂τ ∂σ τ
∂ ∂

+ + =

A sphere under diametral compression or a cone under a load at the apex are
examples to which the above set of equations can be applied.

If the state of stress is two-dimensional in nature, i.e. plane stress state, then
only sr, sq , trq, gr, and gq exist. The other stress components vanish.These non-
vanishing stress components depend only on q and r and are independent of z in
the absence of body forces. The equations of equilibrium reduce to

1 0r rr
r r r

θ θ∂τ σ σ∂σ
∂ ∂θ

−
+ + =

21 0r r
r r r
θ θ θ∂τ ∂σ τ

∂ ∂θ
+ + =

(1.70)
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Example 1.15 Consider a function  f(r, q ), which is called the stress function. If the
values of sr , sq , and trq  are as given below, show that in the absence of body forces,
these satisfy the differential equations of equilibrium.

sr = 
2

2 2
1 1
r r r
∂φ ∂ φ
∂ ∂θ

+

sq = 
2

2r
∂ φ
∂

trq = 
2

2
1 1
r r r

∂ φ ∂φ
∂ ∂θ ∂θ

− +

Solution The equations of equilibrium are

1 0r rr
r r r

θ θ∂τ σ σ∂σ
∂ ∂θ

−
+ + =

21 0r r
r r r
θ θ θ∂τ ∂σ τ

∂ ∂θ
+ + =

Substituting the stress function in the first equation of equilibrium,
2 2 3 3 2

2 2 3 2 2 2 2 2 2
1 1 2 1 1 1 1

r r r rr r r r r r r
∂φ ∂ φ ∂ φ ∂ φ ∂ φ ∂ φ
∂ ∂ ∂θ ∂θ ∂ ∂θ ∂ ∂θ

⎛ ⎞
− + − + + − +⎜ ⎟⎜ ⎟

⎝ ⎠
2 2

2 3 2 2
1 1 1 0

r rr r r
∂φ ∂ φ ∂ φ
∂ ∂θ ∂

+ + − =

Hence, the first equation is satisfied. Similarly, it can easily be verified that the
second condition also holds good.

1.1 It was assumed in Sec.1.2 that across any infinitesimal surface element in
a solid, the action of the exterior material upon the interior is equipollent
(i.e. equal in strength or effect) to only a force. It is also possible to

n

P

n
M

n
T

Fig. 1.33 Problem 1.1

assume that in addition to a force, there is also
a couple, i.e. at any point across any plane n,
there is a stress vector 

n
T  and a couple-stress

vector 
n

M , as shown in Fig. 1.33.
Show that a set of equations similar to

Cauchy’s equations can be derived, i.e. if
we know the couple-stress vectors on three
mutually perpendicular  planes passing
through the point P, then we can determine
the couple-stress vector on any plane n

Chapter_01a.pmd 7/3/2008, 5:29 AM49
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passing through the point. The equations are
n

xM = Mxx nx + Myx ny + Mzx nz

n
yM = Mxy nx + Myy ny + Mzy nz

n
zM = Mxz nx + Myz ny + Mzz nz

, ,
n n n

x y zM M M  are the x, y and z components of the vector 
n

M  acting on

plane n.
1.2 A rectangular beam is subjected to a pure bending moment M. The cross-

section of the beam is shown in Fig. 1.34. Using the elementary flexure
formula, determine the normal and shearing stresses at a point (x, y) on the
plane AB shown.

3
6. n n

MyAns
bh

σ τ⎡ ⎤= =⎢ ⎥⎣ ⎦
1.3 Consider a sphere of radius R subjected to diametral compression

(Fig. 1.35). Let sr, sq and sf be the normal stresses and trq , tqf and tfr the
shear stresses at a point. At point P(o, y, z) on the surface and lying in the
yz plane, determine the rectangular normal stress components sx, sy and sz
in terms of the spherical stress components.

[Ans. sx = sq ; sy = sf cos2 f ; sz = sf sin2 f]

M

A

(x, y)
4 5 ° x

B

M

b

h

Fig. 1.34 Problem 1.2

y

z

P

y

x

q

f

Fig. 1.35 Problem 1.3
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1.4 The state of stress at a point is characterised by the matrix shown. Deter-
mine T11 such that there is at least one plane passing through the point in
such a way that the resultant stress on that plane is zero. Determine the
direction cosines of the normal to that plane.

11 2 1
2 0 2
1 2 0

ij

T
τ

⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

11
2 1 2. 2; ; ;
3 3 3x y zAns T n n n⎡ ⎤= = ± = ± = ±⎢ ⎥⎣ ⎦

1.5 If the rectangular components of stress at a point are as in the matrix below,
determine the unit normal of a plane parallel to the z axis,
i.e. nz = 0, on which the resultant stress vector is tangential to the plane

0
0ij

a d
b e

d e c
τ

⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

1/ 2 1/ 2

. ; ; 0x y z
b aAns n n n

b a a b
⎡ ⎤⎛ ⎞ ⎛ ⎞= ± = ± =⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

1.6 A cross-section of the wall of a dam is shown in Fig.1.36. The pressure of
water on face OB is also shown. The stresses at any point (x, y) are given by
the following expressions

sx = –g y

sy = 3 2
2

tan tan tan
x yρ γ γ ρ

β β β

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

txy = tyx = 2tan
xγ
β

−

tyz = tzx = sz = 0

o x

�

B

y

A

o

C D

Fig. 1.36 Problem 1.6

where g is the specific
weight of water and r the
specific weight of the dam
material.

Consider an element OCD
and show that this element
is in equilibrium under the
action of the external forces
(water pressure and gravity
force) and the internally dis-
tributed forces across the
section CD.
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1.7 Determine the principal stresses and their axes for the states of stress
characterised by the following stress matrices (units are 1000 kPa).

(i)
18 0 24
0 50 0

24 0 32
ijτ

⎡ ⎤
⎢ ⎥⎡ ⎤ = −⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

(ii)
3 10 0

10 0 30
0 30 27

ijτ
−⎡ ⎤

⎢ ⎥⎡ ⎤ = −⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡
⎢
⎢
⎣

Ans. s1 = 23, nx = 0.394, ny = 0.788, nz = 0.473 ⎤
⎥
⎥
⎦

s2 = 0, nx = 0.912, ny = 0.274, nz = 0.304
s3 = – 47, nx = 0.941, ny = 0.188, nz = 0.288

1.8 The state of stress at a point is characterised by the components

sx = 12.31, sy = 8.96, sz = 4.34

txy = 4.20, tyx = 5.27, sz = 0.84

Find the values of the principal stresses and their directions
⎡
⎢
⎢
⎣

Ans. s1 = 16.41, nx = 0.709, ny = 0.627, nz = 0.322 ⎤
⎥
⎥
⎦

s2 = 8.55, nx = 0.616, ny = 0.643, nz = 0.455
s3 = 0.65, nx = 0.153, ny = 0.583, nz = 0.798

1.9 For Problem 1.8, determine the principal shears and the associated normal stresses.
⎡
⎢
⎢
⎣

Ans. t3 = 3.94, sn = 12.48 ⎤
⎥
⎥
⎦

t2 = 7.88, sn = 8.53
t1 = 3.95, sn = 4.52

1.10 For the state of stress at a point characterised by the components (in 1000 kPa)
sx = 12, sy = 4, sz = 10, txy = 3, tyz = tzx = 0

determine the principal stresses and their directions.
⎡
⎢
⎢
⎣

Ans. s1 = 13; 18° with x axis; nz = 0 ⎤
⎥
⎥
⎦

s2 = 10; nx = 0; ny = 0; nz = 1
s3 = 3; –72° with x axis; nz = 0

1.11 Let sx = –5c, sy = c, sz = c, txy = –c, tyz = tzx = 0, where c = 1000 kPa.
Determine the principal stresses, stress deviators, principal axes, greatest
shearing stress and octahedral stresses.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

Ans. s1 = ( –2 + 10 )c; nz = 0 and q = 9.2° with y axis ⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

s2 = c, nx = ny = 0; nz = 1

s3 = ( –2 – 10 )c; nz = 0 and q = 9.2° with x axis

tmax = 10 c; xσ ′  = – 4c; yσ ′  = 2c; zσ ′  = 2c

soct = –c; toct = 78
3

c

⎡
⎢
⎢
⎣

Ans. s1 = 50, nx = 0.6, ny = 0, nz = 0.8 ⎤
⎥
⎥
⎦

s2 = 0, nx = 0.8, ny = 0, nz = 0.6
s3 = –50, nx = nz = 0, ny = 1
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1.12 A solid shaft of diameter d = 10  cm (Fig. 1.37) is subjected to a tensile
force P = 10,000 N and a torque T = 5000 N cm. At point A on the surface,
determine the principal stresses, the octahedral shearing stress and the maxi-
mum shearing stress.

A
P T

Fig. 1.37 Problem 1.12

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ans. ( )1,2
2000 1 13/ 5 Paσ
π

= ± ⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

max
2000 13

5
Paτ

π
=

4000 22
3 5oct Paτ
π

=

1.13 A cylindrical rod (Fig. 1.38) is subjected to a torque T. At any point P of the
cross-section LN, the following stresses occur

sx = sy = sz = txy = tyx = 0, txz = tzx = –Gq y, tyz = tzy = Gq x

x

y

Fig. 1.38 Problem 1.13

n L

N

P
T

z

Check whether these satisfy the equations of equilibrium. Also show that
the lateral surface is free of load, i e. show that

0
n n n

x y z= = =T T T
1.14 For the state of stress given in Problem 1.13, determine the principal shears,

octahedral shear stress and its associated normal stress.

⎡
⎢
⎢
⎢
⎢
⎢⎣

Ans. t1 = t3 = 
1
2

 Gq 2 2x y+ ; t2 = –Gq 2 2x y+ ⎤
⎥
⎥
⎥
⎥
⎥⎦

toct = 6
3

 Gq ( )2 2 ;x y+  soct = 0
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Mohr’s Circles

It was stated in Sec. 1.17 that when points with coordinates (s, t ) for all possible
planes passing through a point are marked on the s –t plane, as in Fig. 1.16, the
points are bounded by the three Mohr’s circles. The same equations can be used
to determine graphically the normal and shearing stresses on any plane with
normal n. Equations (1.40)–(1.42) of Sec.1.18 are

( ) ( )
( ) ( )

2
2 32

1 2 1 3
xn

σ σ σ σ τ
σ σ σ σ
− − +

=
− −

(A1.1)

( ) ( )
( ) ( )

2
3 12

2 3 2 1
yn

σ σ σ σ τ
σ σ σ σ
− − +

=
− −

(A1.2)

( ) ( )
( ) ( )

2
1 22

3 1 3 2
zn

σ σ σ σ τ
σ σ σ σ
− − +

=
− −

(A1.3)

For the above equations, the principal axes coincide with the coordinate
axes x, y and z. Construct a sphere of unit radius with P as the centre. P1, P2
and P3 are the poles of this sphere (Fig.A1.1). Consider a point N on the
surface of the sphere. The radius vector PN makes angles a, b and g, respec-
tively with the x, y and z axes. A plane through P with PN as normal will be
parallel to a tangent plane at N to the unit sphere. If nx, ny and nz are the
direction cosines of the normal n to such a plane through P, then nx = cos a,
ny = cos b, nz = cos g.

z
n

P3

N P2

P y
P1

x

t

s3 0

R2

R1

sσ σ+1 3

2

s2 s1σ σ+1 2

2

Fig. A1.1 Mohr’s circles for three-dimensional state of stress

R3

(s, t)
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Let point N move in such a manner that g remains constant. This gives a circle
parallel to the equatorial circle P1P2.

From Eq. (A1.3)

(s – s1)(s – s2) + t 2 = 2
zn  (s3–s1)(s3–s2)

or
2

1 2
2

σ σ
σ

+⎛ ⎞−⎜ ⎟
⎝ ⎠

 + t 2 = 2
zn  (s3 – s1)(s3 – s2) + 

2
21 2
3

( )
4

R
σ σ−

=

Since nz = cos g is a constant, the above equation describes a circle in the s – t

plane with the centre at 1 2
2

σ σ+  on the s axis and radius equal to R3. This circle
gives the values of s and t as N moves with g constant. For different values
of nz, one gets a family of circles, all with centres at 1 2

2
σ σ+ . If nz = 0 we get a

Mohr’s circle.
Similarly, if ny = cos b is kept constant, the point N on the unit sphere moves

on a circle parallel to the circle P1P3. The values of s and t for different positions
of N moving along this circle can be obtained again from (Eq. A1.2) as

(s – s3)(s – s1) + t 2 = 2
yn  (s2 – s3) (s2 – s1)

or
2

1 3
2

σ σ
σ

+⎛ ⎞−⎜ ⎟
⎝ ⎠

 + t 2 = 2
yn  (s2 – s3)(s2 – s1) + 

2
21 3
2

( )
4

R
σ σ−

=

This describes a circle in the s – t plane with the centre at 1 3( + )
2

σ σ  and

radius equal to R2. For different values of ny, we get a family of circles, all with

centres at  1 3( + )
2

σ σ . With ny = 0, we get the outermost circle. Similarly, with

nx = cos a kept constant, we get another circle with centre at  2 3( + )
2

σ σ  and
radius R1. In order to determine the normal stress s and shear stress t on a plane
with normal n = (nx, ny, nz), we describe two circles with centres and radii as

centre at 31
2

σ σ+  and radius equal to R2

centre at 1 2
2

σ σ+  and radius equal to R3

where R2 and R3 are as given in the above equation. The intersection point of

these two circles locates (s, t ). The third circle with centre at  2 3
2

σ σ+  and

radius R1 is not an independent circle since among the three direction cosines nx,
ny and nz, only two are independent.
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The State of Pure Shear

Theorem: A necessary and sufficient condition for 
n
T  to be a state of pure shear

is that the first invariant should be equal to zero, i.e. l1 = 0.

Proof: By definition, 
n
T  is a state of pure shear at P, if there exists at least one

frame of reference Pxyz, such that with respect to that frame,

0

0

0

xy xz

ij xy yz

xz yz

τ τ

τ τ τ

τ τ

⎡ ⎤
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

Therefore, if the state of stress 
n
T  is a pure shear state, then l1, an invariant,

must be equal to zero. This is therefore a necessary condition. To prove that l1 = 0
is also a sufficient condition, we proceed as follows:

Given l1 = sx + sy + sz = 0. Let Px¢y¢z¢ be the principal axes at P. If s1, s2 and s3,
are the principal stresses then

l1 = s1 + s2 + s3 = 0 (A2.1)
From Cauchy’s formula, the normal stress sn on a plane n with direction

cosines ,x y zn n n′ ′ ′  is

sn = s1
2
xn ′ + s2

2
yn ′  + s3

2
zn ′ (A2.2)

We have to show that there exist at least three mutually perpendicular planes on
which the normal stresses are zero. Let n be the normal to one such plane. Let
Q(x¢, y¢, z¢) be a point on this normal (Fig. A2.1).

If PQ = R, then,

, ,x y z
yx zn n n

R R R′ ′ ′
′′ ′= = =

Since PQ is a pure shear normal, from Eq. (A2.2)

 s1x¢2 + s2 y¢2 + s3z¢2 = R2sn = 0 (A2.3)

The problem is to find the locus of Q. Since
l1 = 0, two cases are possible.

y ¢

z ¢

P x ¢

Fig. A2.1 Normal n to a
plane through P

n

Q (x ¢, y ¢, z ¢)
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Case (i)  If  two of the principal  stresses (say s1 and s2) are positive, the
third principal stress s3 is negative, i.e.

( )1 2 3 1 20, 0, 0σ σ σ σ σ> > = − + <

The case that s1 and s2 are negative and s3 is positive is similar to the above
case, as the result will show.
Case (ii) One of the principal stresses (say s3) is zero, so that one of the remain-
ing principal stress s1 is positive, and the other is negative, i.e.

1 2 1 30, 0, 0σ σ σ σ> = − < =

The above two cases cover all posibilities. Let us consider case (ii) first since it is
the easier one.
Case (ii) From Eq. (A2.3)

s1x¢ 2 – s1 y¢ 2 = 0
or x¢ 2 – y¢ 2 = 0
The solutions are

(i) x¢ = 0 and y¢ = 0. This represents the z¢ axis, i.e. the point Q, lies on
the z¢ axis.

(ii) x¢ = +y¢ or x¢ = –y¢. These represent two mutually perpendicular planes, as
shown in Fig. A2.2(a), i.e. the point Q can lie in either of these two planes.

z¢

P

x¢
p /4

y¢
(a)

s3 = 0

s2

s1 = s2

(b)

Fig. A2.2 (a) Planes at 45° (b) Principal stress on an element under plane state of stress

The above solutions show that for case (ii), i.e when s3 = 0 and s1 = –s2, there
are three pure shear normals. These are the z¢ axis, an axis lying in the
plane x¢ = y¢ and another lying the plane x¢ = –y¢. This is the elementary case
usually discussed in a plane state of stress, as shown in Fig. A2.2(b).

Case (i) Since s3 = – (s1 + s2), Eq. (A2.3) gives
s1x¢2 + s2 y¢2 – (s1 + s3)z¢2 = 0 (A2.4)

This is the equation of an elliptic cone with vertex at P and axis along PZ¢
(Fig. A2.3). The point Q(x¢, y¢, z¢) can be anywhere on the surface of the cone.
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Now one has to show that there are at least
three mutually perpendicular generators of the
above cone. Let Q1 1 1( , , 1)x y′ ′  be a point on the
cone and let S be a plane passing through P
and perpendicular to PQ1. We have to show
that the plane S intersects the cone along PQ2
and PQ3 and that these two are perpendicular
to each other.

Let Q(x¢, y¢, 1) be a point in S. Then, S being
perpendicular to PQ1, PQ is perpendicular to
PQ1, i.e.

1 1 1 0x x y y′ ′ ′ ′+ + = (A2.5)
If Q lies on the elliptic cone also, it must satisfy
Eq. (A2.4), i.e.

s1x¢2 + s2 y¢2 – (s1 + s2) = 0 (A 2.6)

Multiply Eq. (A2.6) by 2
12y′  and substitute for 1y y′ ′  from Eq. (A2.5). This gives

( )2 2 2 2
1 1 2 1 1 2 1( 1) 0x y x x yσ σ σ σ′ ′ ′ ′ ′+ + − + =

or ( )2 2 2 2
1 1 2 1 2 1 2 1 2 1( ) 2 0y x x x x yσ σ σ σ σ σ⎡ ⎤′ ′ ′ ′ ′ ′+ + + − + =⎣ ⎦ (A 2.7)

Similarly, multiplying Eq. (A2.6) by 2
1x ′  and substituting for x¢x¢1 from

Eq. (A2.5), we get

( )2 2 2 2
2 1 1 1 1 1 1 2 1 1( ) 2 0x y y y y xσ σ σ σ σ σ⎡ ⎤′ ′ ′ ′ ′ ′+ + + − + =⎣ ⎦ (A2.8)

If Q(x¢, 1y′ , 1) is a point lying in S as well as on the cone, then it must satisfy
Eqs (A2.5) and (A2.6) or equivalently Eqs (A2.7) and (A2.8). One can solve
Eq. (A2.7) for x¢ and Eq. (A2.8) for y¢. Since these are quadratic, we get two
solutions for each. Let 2 2( , )x y′ ′  and 3 3( , )x y′ ′  be the solutions. Clearly

( ) 2
2 1 2 1

2 3 2 2
2 1 1 1

y
x x

x y

σ σ σ

σ σ

⎡ ⎤′− +⎣ ⎦′ ′ =
⎡ ⎤′ ′+⎣ ⎦

(A 2.9)

( ) 2
1 2 1 1

2 3 2 2
2 1 1 1

x
y y

x y

σ σ σ

σ σ

⎡ ⎤′− +⎣ ⎦′ ′ =
⎡ ⎤′ ′+⎣ ⎦

(A 2.10)

Adding the above two equations
2 2 2 2

1 2 1 1 2 1 2 1 1 1
2 3 2 3 2 2

2 1 1 1

y y x x
x x y y

x y
σ σ σ σ σ σ

σ σ
′ ′ ′ ′+ − − − −′ ′ ′ ′+ =

′ ′+

z
Q2

Q3
Q1

P

x

y

Fig. A2.3 Cone with vertex
at P and axis
along PZ ¢
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Since 1 1 1( , , 1)Q x y′ ′  is on the cone and recalling that s1 + s2 = –s3, the right-
hand side is equal to –1, i.e.

2 3 2 3 1 0x x y y′ ′ ′ ′+ + =
Consequently, PQ2 and PQ3 are perpendicular to each other if Q2 =

( 2x′ , 2y′ , 1) and Q3 3 3( , , 1)x y′ ′  are real. If 2 3,x x′ ′  and 2 3,y y′ ′ , the solutions of
Eqs (A2.7) and (A2.8), are to be real, then the descriminants must be greater
than zero. For this, let 1 1 1( , , 1)Q x y′ ′  be specifically Q1(1, 1, 1) i.e. choose

1x′  = 1y′  = 1. Both the descriminants of Eqs (A2.7) and (A2.8) then are

2 2
1 1 2 24( )σ σ σ σ+ +

The above quantity is greater than zero, since s1 > 0 and s2 > 0. Therefore,
2 3,x x′ ′  and 2 3,y y′ ′  are real.



AppendixAppendixAppendixAppendixAppendix 3 3 3 3 3

Stress Quadric of Cauchy

Let 
n
T  be the resultant stress vector at point P (see Fig. A3.1) on a plane with unit

normal n. The stress surface S associated with a given state of stress 
n
T  is defined

as the locus of all points Q, such that
PQ = Rn

where R = 
( )( )1/ 2

1

σ
=PQ

n
and s (n) is the normal stress component on the plane n. This means that a point
Q is chosen along n such that R = 1/ σ . If such Qs are marked for every plane
passing through P, then we get a surface S and this surface determines the normal
component of stress on any plane through P. The surface consists of St and Sc—
the tensile and the compressive branches of the surface.

The normal to the surface S at Q(n) is parallel to 
n
T . Thus, S completely deter-

mines the state of stress at P. The following cases are possible.
Case (i) s1 π 0, s2 π 0, s3 π 0; St and Sc are each a central quadric surface about
P with axes along nx, ny and nz.

(i) If s1, s2 and s3 all have the same sign, say s1 > 0, s2 > 0, s3 > 0 then
S = St is an ellipsoid with axes along nx, ny and nx at P. There are two cases
(a) If s1 = s2 π s3, then S = St is a spheroid with polar axis along nz
(b) If s1 = s2 = s3, then S = St is a sphere.

(ii) If s1, s2 and s3 are not all of the same sign, say s1 > 0, s2 > 0 and
s3 < 0, then St is a hyperboloid with one sheet and Sc is a double sheeted
hyperboloid, the vertices of which are along the nz axis. In particular, if s1 = s2,
then St and Sc are hyperboloids of revolution with a polar axis along nz.

Case (ii) Let s1 π 0, s2 π 0 and s3 = 0 (i.e. plane state). The St and S are right
second-order cylinders whose generators are parallel to nz and whose cross-sections
have axes along nx and ny. In this case, two possibilities can be considered.

(i) If s1 > 0, s2 > 0, then S = St is an elliptic cylinder. In particular, If
s1 = s2 then S = St is a circular cylinder.

(ii) If s1 > 0 and s2 < 0, then St is a hyperbolic cylinder whose cross-section has
vertices on the nx axis and Sc is a hyperbolic cylinder.

Case (iii) If s1 π 0 and s2 = s3 = 0 (uniaxial state) and say s1 > 0 then
S = St consists of two parallel planes, each perpendicular to nx and equi-
distant from P.
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One can prove the above statements directly from
Eqs (1.53) of Sec. 1.23. These equations are

St : s1x
2 + s2y2 + s3z

3 = 1
Sc : s1x

2 + s2 y2 + s3z
2 = –1

These can be rewritten as

( ) ( ) ( )
22 2

2 2 2
1 2 3

: 1
1/ 1/ 1/

t
yx zS

σ σ σ
+ + =

( ) ( ) ( )
22 2

2 2 2
1 2 3

: 1
1/ 1/ 1/

c
yx zS

σ σ σ
+ + = −  (A3.1)

Case (i) s1 π 0, s2 π 0, s3 π 0
(i) s1> 0, s2 > 0, s3 > 0

Equation (A3.1) shows that Sc is an imaginary
surface and hence, S = St. This equation represents
an ellipsoid.

(a) If s1 = s2 π s3 the central section is a circle
(b) If s1 = s2 = s3 the surface is a sphere

(ii) If s1 > 0, s2 > 0, s3 < 0

( ) ( ) ( )
22 2

2 2 2
1 2 3

: 1
1/ 1/ 1/

t
yx zS

σ σ σ
+ − =

( ) ( ) ( )
22 2

2 2 2
1 2 3

: 1
1/ 1/ 1/

c
yx zS

σ σ σ
− − + = (A3.2)

Hence, St is a one-sheeted hyperboloid and Sc is a
two-sheeted hyperbloid. This is shown in Fig. A3.2.
Case (ii) Let s1 π 0, s2 π 0 and s3 = 0. Then Eq. (1.53)
reduces to

z

P

x

y

Fig. A3.1 Ellipsoidal
surface

st

   sc

31/ σ

Fig. A3.2 One-sheeted
and two shee-
ted hyperbo-
loids

s1x2 + s2 y2 = ±1  (A3.3)

This is obviously a second-order cylinder, the surface of which is made of
straight lines parallel to the z-axis, passing through every point of the curve in the
xy plane, of which an equation in that plane is expressed by Eq. (A3.3).

(i) If s1 > 0 and s2 > 0, the above equation becomes

s1x2 + s2 y2 + 1

or
22

2 2
1 2

1
(1/ ) (1/ )

yx
σ σ

+ =
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This is the equation of an ellipse in xy plane. Hence, S = St is an elliptic
cylinder.

In particular, if s1 = s2, the elliptic cylinder becomes a circular cylinder.
(ii) If s1 > 0 and s2 < 0, then the equation becomes

s1x
2 – |s2| y

2 = ±1

or x2/(1/s1)2 – y2 2
2(1/ ) 1σ = ±

This describes conjugate hyperbolas in the xy plane. St is given by a hyper-
bolic cylinder, the cross-sectional vertices of which lie on the nx axis and Sc is
given by a hyperbolic cylinder with its cross-sectional vertices lying on
the n axis.
Case (iii) If s1 π 0, s2 = s3 = 0, Eq. (1.53) reduces to

s1 x2 = ±1
When s1 > 0, this becomes

x2 = 1/s1

or x = ±1/ 1σ
This represents two straight lines parallel to the y axis and equidistant from it.

Hence, S = St is given by two parallel planes, each perpendicular to nx and equi-
distant from P.



2.1 INTRODUCTION
In this chapter the state of strain at a point will be analysed. In elementary strength
of materials two types of strains were introduced: (i) the extensional strain (in x or
y direction) and (ii) the shear strain in the xy plane. Figure 2.1 illustrates these two
simple cases of strain. In each case, the initial or undeformed position of the
element is indicated by full lines and the changed position by dotted lines. These
are two-dimensional strains.

Dx

Fig. 2.1 (a) Linear strain in x direction (b) linear strain in y direction (c) shear strain
in xy plane

In Fig. 2.1(a), the element undergoes an extension Dux in x direction. The exten-
sional or linear strain is defined as the change in length per unit initial length. If ex
denotes the linear strain in x direction, then

ex = xu
x

∆
∆ (2.1)

Similarly, the linear strain in y direction [Fig. 2.1(b)] is

ey = 
yu

y
∆
∆ (2.2)

Figure 2.1(c) shows the shear strain g xy in the xy plane. Shear strain g xy is defined
as the change in the initial right angle between two line elements originally

Dux

Analysis of Strain 2
CHAPTER

Dux

Dy
Duy

q 2

Dx

Dy

Duy

q 1

(b) (c)(a)
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parallel to the x and y axes. In the figure, the total change in the angle is q1 + q2.
If q1 and q2 are very small, then one can put

q1 (in radians) + q2 (in radians) = tan q1 + tan q2

From Fig. 2.1(c)

tan q1 = yu
x

∆
∆ , tan q2 = xu

y
∆
∆ (2.3)

Therefore, the shear strain g xy is

g xy = q1 + q2 = yu
x

∆
∆

 + xu
y

∆
∆ (2.4)

Reduction in the initial right angle is considered to be a positive shear strain, since
positive shear stress components txy and tyx cause a decrease in the right angle.

In addition to these two types of strains, a third type of strain, called the
volumetric strain, was also introduced in elementary strength of materials. This is
change in volume per unit original volume. In this chapter, we will study strains in
three dimensions and we will begin with the study of deformations.

2.2 DEFORMATIONS
In order to study deformation or change in the shape of a body, we compare the
positions of material points before and after deformation. Let a point P belonging

y

z

P(x, y, z)

u

r

r ¢¢¢¢¢

O

Fig. 2.2 Displacement of point P to P¢

x

P ¢(x ¢, y ¢, z ¢)

to the body and having coordinates
(x, y, z) be displaced after deformations
to P¢ with coordinates (x¢, y¢, z¢)
(Fig. 2.2). Since P is displaced to P¢,
the vector segment PP¢ is called the
displacement vector and is denoted
by u.

The displacement vector u has
components ux, uy and uz along the x,
y and z axes respectively, and one can
write

u = iux + juy + kuz (2.5)

The displacement undergone by any
point is a function of its initial co-

ordinates. We assume that the displacement is defined throughout the volume
of the body, i.e. the displacement vector u (both in magnitude and direction)
of any point P belonging to the body is known once its coordinates are known.
Then we can say that a displacement vector field has been defined throughout
the volume of the body. If r is the position vector of point P, and r¢ that of
point P¢, then

r¢ = r + u
(2.6)

u = r¢ – r



Analysis of Strain 65

Example 2.1 The displacement field for a body is given by

u = (x2 + y)i + (3 + z) j + (x2 + 2y)k
What is the deformed position of a point originally at (3, 1, –2)?

Solution The displacement vector u at (3, 1, –2) is

u = (32 + 1)i + (3 – 2) j + (32 + 2)k
= 10i + j + 11k

The initial position vector r of point P is
r = 3i + j – 2k

The final position vector r¢ of point P¢ is

r¢ = r + u = 13i + 2 j + 9k

Example 2. 2 Two points P and Q in the undeformed body have coordinates
(0, 0, 1) and (2, 0, –1) respectively. Assuming that the displacement field given
in Example 2.1 has been imposed on the body, what is the distance between
points P and Q after deformation?

Solution The displacement vector at point P is

u(P) = (0 + 0)i + (3 + 1) j + (0 + 0)k = 4j

The displacement components at P are ux = 0, uy = 4, uz = 0. Hence, the final
coordinates of P after deformation are

P¢ : x + ux = 0 + 0 = 0
 y + uy = 0 + 4 = 4
 z + uz = 1 + 0 = 1

or P¢: (0, 4, 1)

Similarly, the displacement components at point Q are,

ux = 4, uy = 2, uz = 4

and the coordinates of Q¢ are (6, 2, 3).
The distance P¢Q¢ is therefore

d¢ = (62 + 22 + 22)1/2 = 2 11

2.3 DEFORMATION IN THE NEIGHBOURHOOD
 OF A POINT

Let P be a point in the body with coordinates (x, y, z). Consider a small region
surrounding the point P. Let Q be a point in this region with coordinates
(x + Dx, y + Dy, z + Dz). When the body undergoes deformation, the points P
and Q move to P¢ and Q¢. Let the displacement vector u at P have components
(ux, uy, uz) (Fig. 2.3).
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The coordinates of P, P¢ and Q are
P: (x, y, z)
P¢: (x + ux, y + uy, z + uz)
Q: (x + Dx, y + Dy, z + Dz)

The displacement components at Q dif-
fer slightly from those at P since Q is away
from P by Dx, Dy and Dz. Consequently,
the displacements at Q are,

ux + Dux, uy + Duy, uz + Duz.

If Q is very close to P, then to first-order
approximation

x x x
x

u u uu x y zx y z
∂ ∂ ∂
∂ ∂ ∂∆ = ∆ + ∆ + ∆ (2.7a)

The first term on the right-hand side is the rate of increase of ux in x direction
multiplied by the distance traversed, Dx. The second term is the rate of increase of
ux in y direction multiplied by the distance traversed in y direction, i.e. Dy. Simi-
larly, we can also interpret the third term. For Duy and Duz too, we have

y y y
y

u u u
u x y zx y z

∂ ∂ ∂
∂ ∂ ∂∆ = ∆ + ∆ + ∆ (2.7b)

z z z
z

u u uu x y zx y z
∂ ∂ ∂
∂ ∂ ∂∆ = ∆ + ∆ + ∆ (2.7c)

Therefore, the coordinates of Q¢ are,

Q¢ = (x + D x + ux + Dux, y + Dy + uy + Duy, z + Dz + uz + Duz) (2.8)

Before deformation, the segment PQ had components D x, Dy and D z along the
three axes. After deformation, the segment P¢Q¢ has components D x + Dux, Dy +
Duy, Dz + Duz along the three axes. Terms like,

, ,x x xu u u
x y z

∂ ∂ ∂
∂ ∂ ∂

, etc.

are important in the analysis of strain. These are the gradients of the displacement
components (at a point P ) in x, y and z directions. One can represent these in the
form of a matrix called the displacement-gradient matrix as

i

j

u
x

∂
∂
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = 

x x x

y y y

z z z

u u u
x y z

u u u
x y z

u u u
x y z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x

P ¢

P Q

Q ¢

y

z

Fig. 2.3 Displacements of two
 neighbouring points
 P and Q
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Example 2.3 The following displacement field is imposed on a body

u = (xyi + 3x2z j + 4k)10–2

Consider a point P and a neighbouring point Q where PQ has the following
direction cosines

nx = 0.200, ny = 0.800, nz = 0.555
Point P has coordinates (2, 1, 3). If PQ = D s, find the components of P¢¢¢¢¢Q¢¢¢¢¢ after
deformation.

Solution Before deformation, the components of PQ are
Dx = nx Ds = 0.2 Ds
Dy = ny Ds = 0.8 Ds
Dz = nz Ds = 0.555 Ds

Using Eqs (2.7a)–(2.7c), the values of Dux, Duy and Duz can be calculated. We are
using p = 10–2;

ux = pxy uy = 3px2z uz = 4p

xu pyx
∂
∂ = 6yu

pxzx
∂
∂ = 0zu

x
∂
∂ =

xu pxy
∂
∂ = 0yu

y
∂
∂ = 0zu

y
∂
∂ =

0xu
z

∂
∂ = 23yu

pxz
∂
∂ = 0zu

z
∂
∂ =

At point P(2, 1, 3) therefore,
Dux = (yDx + xDy)p = (Dx + 2Dy)p
Duy = (6xzDx + 3x2Dz)p = (36Dx + 12Dz)p
Duz = 0

Substituting for Dx, Dy and Dz, the components of Ds¢ = |P¢Q¢| are
Dx + Dux = 1.01 Dx + 0.02 Dy = (0.202 + 0.016) Ds = 0.218 Ds
Dy + Duy = (0.36 Dx + Dy + 0.12 Dz) = (0.072 + 0.8 + 0.067) Ds

= 0.939 Ds
Dz + Duz = Dz = 0.555 Ds

Hence, the new vector P¢Q¢can be written as
P¢Q¢ ===== (0.218i + 0.939j + 0.555k)Ds

2.4 CHANGE IN LENGTH OF A LINEAR ELEMENT
Deformation causes a point P(x, y, z) in the solid body under consideration to be
displaced to a new position P¢ with coordinates (x + ux, y + uy, z + uz) where ux, uy
and uz are the displacement components. A neighbouring point Q with coordi-
nates (x + Dx, y + Dy, z + Dz) gets displaced to Q¢ with new coordinates (x + Dx +
ux + Dux, y + Dy + uy + Duy, z + Dz + uz +Duz). Hence, it is possible to determine the
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change in the length of the line element PQ caused by deformation. Let Ds be the
length of the line element PQ. Its components are

Ds: (Dx, Dy, Dz)
\ Ds2: (PQ)2 = Dx2 + Dy2 + Dz2

Let Ds¢ be the length of P¢Q¢. Its components are
Ds¢: (Dx¢ = Dx + Dux, Dy¢ = Dy + Duy, Dz¢ = Dz + Duz)

\ Ds¢2: (P¢Q¢ )2 = (Dx + Dux)2 + (Dy + Duy)2 + (Dz + Duz)2

From Eqs (2.7a)–(2.7c),

1 x x xu u ux x y zx y z
∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞′∆ = + ∆ + ∆ + ∆⎜ ⎟
⎝ ⎠

1y y yu u u
y x y zx y z

∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞
′∆ = ∆ + + ∆ + ∆⎜ ⎟

⎝ ⎠
(2.9)

1z z zu u uz x y zx y z
∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞′∆ = ∆ + ∆ + + ∆⎜ ⎟
⎝ ⎠

We take the difference between Ds¢2 and Ds2

(P¢Q¢ )2 – (PQ)2 = Ds¢ 2 – Ds2

= (Dx¢ 2 + Dy¢ 2 + Dz¢ 2) – (Dx2 + Dy2 + Dz2)
= 2(Exx Dx2 + Eyy Dy2 + Ezz Dz2 + Exy Dx Dy

+ Eyz Dy Dz + Exz Dx Dz) (2.10)

where Exx = 
22 2

1
2

yx x zuu u u
x x x x

∂∂ ∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

Eyy = 
22 2

1
2

y yx zu uu u
y y y y

∂ ∂∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

Ezz =
22 2

1
2

yxz zuuu u
z z z z

∂∂∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
(2.11)

Exy = y y yx x x z zu u uu u u u u
y x x y x y x y

∂ ∂ ∂∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +

Eyz = y y yx xz z zu u uu uu u u
z y y z y z y z

∂ ∂ ∂∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +

Exz = y yx x xz z zu uu u uu u u
z x x z x z x z

∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +

It is observed that
Exy = Eyx, Eyz = Ezy, Exz = Ezx

We introduce the notation

EPQ = s s
s

′∆ − ∆
∆

(2.12)
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EPQ is the ratio of the increase in distance between the points P and Q caused by
the deformation to their initial distance. This quantity will be called the relative
extension at point P in the direction of point Q. Now,

2 2

2
s s′∆ − ∆ = 

2

2
( )

2
s s s s

s s
⎛ ⎞′ ′∆ − ∆ ∆ − ∆+⎜ ⎟∆ ∆⎝ ⎠

 Ds2

= ( )21
2PQ PQE E+ Ds2 (2.13)

= EPQ ( )11 2 PQE+ Ds2

From Eq. (2.10), substituting for (Ds¢2 – Ds2)

EPQ ( )11 2 PQE+ Ds2 = Exx Dx2 + Eyy Dy2 + Ezz Dz2

+ Exy Dx Dy + Eyz Dy Dz + Exz Dx Dz
If nx, ny and nz are the direction cosines of PQ, then

nx = x
s

∆
∆

, ny = y
s

∆
∆

, nz = z
s

∆
∆

Substituting these in the above expression

EPQ ( )11 2 PQE+  = Exx
2
xn  + Eyy

2
yn  + Ezz

2
zn  + Exy nx ny

+ Eyznynz + Exznxnz (2.14)
Equation (2.14) gives the value of the relative extension at point P in the direction
PQ with direction cosines nx, ny and nz .

If the line segment PQ is parallel to the x axis before deformation, then
nx = 1, ny = nz = 0 and

Ex ( )11 2 xE+  = Exx (2.15)

Hence, Ex = [1 + 2Exx]1/2 – 1 (2.16)
This gives the relative extension of a line segment originally parallel to the

x-axis. By analogy, we get
Ey = [1 + 2Eyy]1/2 – 1, Ez = [1 + 2Ezz]1/2 – 1 (2.17)

2.5 CHANGE IN LENGTH OF A LINEAR
ELEMENT—LINEAR COMPONENTS

Equation (2.11) in the previous section contains linear quantities like ∂ux /∂x, ∂uy /
∂y, ∂ux /∂y, . . ., etc., as well as non-linear terms, like (∂ux /∂x)2, (∂ux /∂x◊ ∂ux /∂y), …,
etc. If the deformation imposed on the body is small, the quantities like ∂ux /∂x,
∂uy /∂y, etc. are extremely small so that their squares and products can be
neglected. Retaining only linear terms, the following equations are obtained

exx = xu
x

∂
∂ , eyy = yu

y
∂
∂ , ezz = zu

z
∂
∂ (2.18)
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gxy = yx uu
y x

∂∂
∂ ∂+ , gyz = y zu u

z y
∂ ∂
∂ ∂+ , gxz = x zu u

z x
∂ ∂
∂ ∂+ (2.19)

EPQ ª ePQ = exx
2
xn  + eyy

2
yn  + ezz

2
zn  + exy nx ny + eyz ny nz + exz nxnz (2.20)

Equation 2.20 directly gives the linear strain at point P in the direction PQ with
direction cosines nx, ny, nz. When nx = 1, ny = nz = 0, the line element PQ is parallel
to the x axis and the linear strain is

Ex ª exx = xu
x

∂
∂

Similarly, Ey ª eyy = yu
y

∂
∂ and Ez ª ezz = zu

z
∂
∂

are the linear strains in y and z directions respectively. In the subsequent analy-
ses, we will use only the linear terms in strain components and neglect squares
and products of strain components. The relations expressed by
Eqs (2.18) and (2.19) are known as the strain displacement relations of Cauchy.

2.6 RECTANGULAR STRAIN COMPONENTS
exx, eyy and ezz are the linear strains at a point in x, y and z directions. It will be
shown later that gxy, gyz and gxz represent shear strains in xy, yz and xz planes
respectively. Analogous to the rectangular stress components, these six strain
components are called the rectangular strain components at a point.

2.7 THE STATE OF STRAIN AT A POINT
Knowing the six rectangular strain components at a point P, one can calculate the
linear strain in any direction PQ, using Eq. (2.20). The totality of all linear strains
in every possible direction PQ defines the state of strain at point P. This defini-
tion is similar to that of the state of stress at a point. Since all that is required to
determine the state of strain are the six rectangular strain components, these six
components are said to define the state of strain at a point. We can write this as

[eij] = 

xx xy xz

xy yy yz

xz yz zz

ε γ γ

γ ε γ

γ γ ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(2.21)

To maintain consistency, we could have written
exy = gxy, eyz = gyz, exz = gxz

but as it is customary to represent the shear strain by g, we have retained this
notation. In the theory of elasticity, 1/2gxy is written as exy, i.e.

1
2

gxy =  1
2

yx uu
y x

∂∂
∂ ∂

⎛ ⎞
+⎜ ⎟

⎝ ⎠
 = exy (2.22)

If we follow the above notation and use
exx = exx, eyy = eyy, ezz = ezz
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then Eq. (2.20) can be written in a very short form as
ePQ = 

i j
∑ ∑ eij ninj

where i and j are summed over x, y and z, Note that eij = eji

2.8 INTERPRETATION OF gggggxy , gggggyz , gggggxz AS SHEAR
STRAIN COMPONENTS

It was shown in the previous section that

exx = xu
x

∂
∂

, eyy = yu
y

∂
∂ , ezz = zu

z
∂
∂

represent the linear strains of line elements parallel to the x, y and z axes respectively.
It was also stated that

gxy = yx uu
y x

∂∂
∂ ∂+ , gyz = y zu u

z y
∂ ∂
∂ ∂+ , gxz = x zu u

z x
∂ ∂
∂ ∂+

represent the shear strains in the xy, yz and xz planes respectively. This can be
shown as follows.

Consider two line elements, PQ and PR, originally perpendicular to each other
and parallel to the x and y axes respectively (Fig. 2.4a).

x

y

O

P

P ¢

R

R ¢

∂
∂

xu
y

y

D y

uy

ux

q 1

q 2

Fig. 2.4 (a) Change in orientations of line segments PQ and PR-shear strain

Let the coordinates of P be (x, y) before deformation and let the lengths of PQ
and PR be Dx and Dy respectively. After deformation, point P moves to P¢, point
Q to Q¢ and point R to R¢.

Let ux, uy be the displacements of point P, so that the coordinates of P¢ are
(x + ux, y + uy). Since point Q is Dx distance away from P, the displacement
components of Q(x + Dx, y) are

ux + xu
x

∂
∂  D x and uy + yu

x
∂
∂  Dx

Q ¢

Q

∂
∂

yu

x
Dx

D x
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Similarly, the displacement components of R(x, y +Dy) are

ux + xu
y

∂
∂

 Dy and uy + yu
y

∂
∂  Dy

From Fig. 2.4(a), it is seen that if q1 and q2 are small, then

q1 ª tan q1 = yu
x

∂
∂

q2 ª tan q2 = xu
y

∂
∂ (2.23)

so that the total change in the original right angle is

q1 + q2 =
yx uu

y x
∂∂

∂ ∂+  = gxy (2.24)

This is the shear strain in the xy plane at point P. Similarly, the shear strains gyz
and gzx can be interpreted appropriately.

If the element PQR undergoes a pure rigid body rotation through a small angu-
lar displacement, then from Fig. 2.4(b) we note

y x
zo

u u
x y

∂ ∂
ω ∂ ∂= = −

taking the counter-clockwise rotation
as positive. The negative sign in (–∂ux /∂ y)
comes since a positive ∂ux/∂ y will give
a movement from the y to the x axis as
shown in Fig. 2.4(a). No strain occurs
during this rigid body displacement.
We define

wz = 1
2

y xu u
x y

∂ ∂
∂ ∂

⎛ ⎞
−⎜ ⎟

⎝ ⎠
= wyx     (2.25)

This represents the average of the
sum of rotations of the x and y
elements and is called the rotational
component. Similarly, for rotations about
the x and y axes, we get

wx = 1
2

yz uu
y z

∂∂
∂ ∂

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 = wzy (2.26)

wy = 1
2

x zu u
z x

∂ ∂
∂ ∂

⎛ ⎞−⎜ ⎟
⎝ ⎠

 = wxz (2.27)

R ¢

P ¢

wzo = xu
y

∂
∂

Q ¢

wzo = 
yu

x

∂
∂

x
O

y

Fig. 2.4 (b) Change in orientations of
line segments PQ and PR-
rigid body rotation
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Example 2.4 Consider the displacement field

u = [y2i + 3yz j + (4 + 6x2)k]10–2

What are the rectangular strain components at the point P(1, 0, 2)? Use
only linear terms.

Solution ux = y2 ◊ 10–2 uy = 3yz ◊ 10–2 uz = (4 + 6x2) ◊ 10–2

xu
x

∂
∂

= 0 yu
x

∂
∂

 = 0 zu
x

∂
∂

 = 12x ◊ 10–2

xu
y

∂
∂

= 2y ◊ 10–2 yu
y

∂
∂

= 3z ◊ 10–2 zu
y

∂
∂

= 0

xu
z

∂
∂

= 0 yu
z

∂
∂  = 3y ◊ 10–2 zu

z
∂
∂

 = 0

The linear strains at (1, 0, 2) are

exx = xu
x

∂
∂

 = 0, eyy = yu
y

∂
∂

 = 6 ¥ 10–2, e zz = zu
z

∂
∂

 = 0

The shear strains at (1, 0, 2) are

gxy = yx uu
y x

∂∂
∂ ∂+  = 0 + 0 = 0

gyz = 
y zu u
z y

∂ ∂
∂ ∂+  = 0 + 0 = 0

gxz = x zu u
z x

∂ ∂
∂ ∂+  = 0 + 12 ¥ 10–2 = 12 ¥ 10–2

2.9 CHANGE IN DIRECTION OF A LINEAR ELEMENT
It is easy to calculate the change in the orientation of a linear element resulting
from the deformation of the solid body. Let PQ be the element of length Ds, with
direction cosines nx, ny and zn . After deformation, the element becomes P¢Q¢ of
length Ds¢, with direction cosines n'x, n'y and zn′. If ux, uy, uz are the displacement
components of point P, then the displacement components of point Q are.

ux + Dux, uy + Duy, uz + Duz

where Dux, Duy and Duz are given by Eq. (2.7a)–(2.7c).
From Eq. (2.12), remembering that in the linear range EPQ = ePQ,

Ds¢ = Ds (1 + ePQ) (2.28)
The coordinates of P, Q, P¢ and Q¢ are as follows:

P: (x, y, z)
Q: (x + D x, y + Dy, z + D z)
P¢: (x + ux, y + uy, z + uz)
Q¢: (x + D x + ux + Dux, y + Dy + uy + Duy, z + D z + uz + Duz)
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Hence,

nx = x
s

∆
∆

,  ny = y
s

∆
∆

, nz = z
s

∆
∆

, ,yx z
x y z

y ux u z un n ns s s
∆ + ∆∆ + ∆ ∆ + ∆′ ′= = =′ ′ ′∆ ∆ ∆

Substituting for Ds¢ from Eq. (2.28) and for Dux, Duy, Duz from Eq. (2.7a)–(2.7c)

1 1
1

x x x
x x y z

PQ

u u u
n n n n

x y z
∂ ∂ ∂

ε ∂ ∂ ∂
⎡ ⎤⎛ ⎞′ = + + +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

1 1
1

y y y
y x y z

PQ

u u u
n n n n

x y z
∂ ∂ ∂

ε ∂ ∂ ∂
⎡ ⎤⎛ ⎞

′ = + + +⎢ ⎥⎜ ⎟+ ⎢ ⎥⎝ ⎠⎣ ⎦
(2.29)

1 1
1

z z z
z x y z

PQ

u u un n n n
x y z

∂ ∂ ∂
ε ∂ ∂ ∂

⎡ ⎤⎛ ⎞′ = + + +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦
The value of ePQ is obtained using Eq. (2.20).

2.10 CUBICAL DILATATION
Consider a point A with coordinates (x, y, z) and a neighbouring point B with
coordinates (x + Dx, y + Dy, z + Dz). After deformation, the points A and B move to
A¢ and B¢ with coordinates

A¢ : (x + ux, y + uy, z + uz)
B¢ : (x + Dx + ux + Dux, y + Dy + uy + Duy, z + Dz + uz + Duz)

where ux, uy and uz are the components of diplacements of point A, and from Eqs
(2.7a)–(2.7c)

Dux = x x xu u u
x y z

x y z
∂ ∂ ∂
∂ ∂ ∂

∆ + ∆ + ∆

Duy = y y yu u u
x y z

x y z
∂ ∂ ∂
∂ ∂ ∂

∆ + ∆ + ∆

Duz = z z zu u u
x y

x y z
∂ ∂ ∂
∂ ∂ ∂

∆ + ∆ + Dz

The displaced segement A¢B¢ will have the following components along the x, y
and z axes:

x axis: Dx + Dux = 1 x x xu u u
x y z

x y z
∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞+ ∆ + ∆ + ∆⎜ ⎟
⎝ ⎠

y axis: Dy + Duy = 1y y yu u u
x y z

x y z
∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞
∆ + + ∆ + ∆⎜ ⎟⎝ ⎠

(2.30)

z axis: Dz + Duz = 1z z zu u u
x y z

x y z
∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞∆ + ∆ + + ∆⎜ ⎟
⎝ ⎠



Analysis of Strain 75

Consider now an infinitesimal rectangular parallelepiped with sides Dx, Dy and Dz
(Fig. 2.5). When the body undergoes deformation, the right parallelepiped PQRS
becomes an oblique parallelepiped P¢Q¢R¢S¢.
Identifying PQ of Fig. 2.5 with AB of Eqs (2.30), one has Dy = Dz = 0. Then, from
Eqs (2.30) the projections of P¢Q¢ will be

along x axis: 1 xu
x

∂
∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

Dx

along y axis: yu
x

∂
∂

Dx

along z axis: zu
x

∂
∂

Dx

Hence, one can successively identify AB with PQ (Dy = Dz = 0), PR (Dx =
Dz = 0), PS ( Dx = Dy = 0) and get the components of P¢Q¢, P¢R¢ and P¢S¢ along the
x, y and z axes as

P¢Q¢ P¢R¢ P¢S¢

x axis: 1 xu
x

∂
∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

Dx xu
y

∂
∂

Dy xu
z

∂
∂

Dz

y axis: yu
x

∂
∂

Dx 1 yu
y

∂
∂

⎛ ⎞
+⎜ ⎟

⎝ ⎠
Dy yu

z
∂
∂

Dz

z axis: zu
x

∂
∂

Dx zu
y

∂
∂

Dy 1 zu
z

∂
∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

Dz

The volume of the right parallelepiped before deformation is equal to V = Dx Dy
Dz. The volume of the deformed parallelepiped is obtained from the well-known
formula from analytic geometry as

V ¢ = V + DV = D ◊ D x Dy Dz

x

y

O
P

SR

Q

R ¢ S ¢

z
Fig. 2.5 Deformation of right parallelepiped

P ¢

Q ¢
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where D is the following determinant:

D = 

1

1

1

x x x

y y y

z z z

u u u
x y z

u u u
x y z

u u u
x y z

∂ ∂ ∂⎛ ⎞+⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂ ∂⎛ ⎞

+⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂ ∂⎛ ⎞+⎜ ⎟∂ ∂ ∂⎝ ⎠

(2.31)

If we assume that the strains are small quantities such that their squares and
products can be negelected, the above determinant becomes

D ª 1 + yx zuu u
x y z

∂∂ ∂
∂ ∂ ∂

+ +

= 1 + exx + eyy + ezz (2.32)
Hence, the new volume according to the linear strain theory will be

V ¢ = V + DV = (1 + exx + eyy + ezz) D x Dy Dz (2.33)

The volumetric strain is defined as

D = V
V
∆  = exx + eyy + ezz (2.34)

Therefore, according to the linear theory, the volumetric strain, also known as
cubical dilatation, is equal to the sum of three linear strains.

Example 2.5 The following state of strain exists at a point P

[eij] = 
0.02 0.04 0
0.04 0.06 0.02
0 0.02 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

In the direction PQ having direction cosines nx = 0.6, ny = 0 and nz = 0.8,
determine ePQ .

Solution From Eq. (2.20)
ePQ = 0.02 (0.36) + 0.06 (0) + 0 (0.64) – 0.04 (0) – 0.02 (0) + 0 (0.48)

= 0.007

Example 2.6 In Example 2.5, what is the cubical dilatation at point P?

Solution From Eq. (2.34)
D = exx + eyy + ezz

= 0.02 + 0.06 + 0 = 0.08
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2.11 CHANGE IN THE ANGLE BETWEEN
TWO LINE ELEMENTS

Let PQ be a line element with direction cosines nx1, ny1, nz1 and PR be another line
element with direction cosines nx 2, ny2, nz2, (Fig. 2.6). Let q be the angle between

x

y

O
P

P ¢
Q

Q ¢

R

R ¢

q

q ¢

z

Fig. 2.6 Change in angle between
two line segments

cos q¢ = 1
(1 ) (1 )PQ PRε ε+ +

 [(1 + 2exx) nx1nx2 + (1 + 2eyy) ny1ny2

+ (1 + 2ezz) nz1nz2 + gxy(nx1ny2 + nx2ny1)
+ gyz(ny1nz2 + ny2nz1) + gzx(nx1nz2 + nx2 nz1)] (2.35)

In particular, if the two line segments PQ and PR are at right angles to each other
before strain, then after strain,

cos q¢ = 1
(1 ) (1 )PQ PRε ε+ +

[2exx nx1 nx2 + 2eyy ny1 ny2 + 2ezz nz1 nz2

+ gxy (nx1ny2 + nx2ny1) + gyz(ny1nz2 + ny2nz1)
+ gzx(nx1 nz2 + nx2 nz1)] (2.36a)

Now (90∞ – q ¢) represents the change in the initial right angle. If this is denoted
by a, then

q ¢ = 90∞ – a (2.36b)
or cos q ¢ = cos (90∞ – a) = sin a ª a (2.36c)
since a is small. Therefore Eq. (2.36a) gives the shear strain a between PQ and
PR. If we represent the directions of PQ and PR at P by x¢ and y¢ axes, then

gx¢y¢ at P = cos q ¢ = expression given in Eqs (2.36a), (2.36b) and (2.36c)

Example 2.7 The displacement field for a body is given by
u = k(x2 + y)i + k(y +z)j + k(x2 + 2z2)k where k = 10–3

At a point P(2, 2, 3), consider two line segments PQ and PR having the follow-
ing direction cosines before deformation

PQ : nx1 = ny1 = nz1 = 1
3

, PR: nx2 = ny2 = 
1
2

, nz2 = 0

Determine the angle between the two segments before and after deformation.

the two line elements before deformation.
After deformation, the line segments be-
come P¢Q¢ and P¢R¢ with an included angle
q ¢. We can determine q ¢ easily from the
results obtained in Sec. 2.9.

From analytical geometry

cos q ¢= 1 2 1 2 1 2+ +′ ′ ′ ′ ′ ′x x y y z zn n n n n n

The values of 1 1 1 2 2, , ,′ ′ ′ ′ ′x y z x yn n n n n  and

2′zn  can be substituted from Eq. (2.29).
Neglecting squares and products of small
strain components.
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Solution Before deformation, the angle q between PQ and PR is

cos q = nx1 nx2 + ny1ny2 + nz1nz2 = 1 1
6 6
+  = 0.8165

\ q = 35.3°

The strain components at P after deformation are

exx = xu
x

∂
∂

 = 2kx = 4k, eyy = yu
y

∂
∂

 = k, ezz = 
zu
z

∂
∂

 = 4kz = 12k

gxy = yx uu
y x

∂∂
∂ ∂

+  = k, gyz = y zu u
z y

∂ ∂
∂ ∂

+  = k, gzx = xz uu
x z

∂∂
∂ ∂

+  = 4k

The linear strains in directions PQ and PR are from Eq. (2.20)

ePQ = k ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 234 12 1 1 4
3 3 3 3 3 3 3

k⎡ ⎤× + + × + × + × + × =⎢ ⎥⎣ ⎦

ePR = k ( ) ( ) ( ) ( )1 1 14 1 12 0 1 0 0 32 2 2
⎡ ⎤× + × + × + × + + =⎢ ⎥⎣ ⎦

k

After deformation, the angle beteween P¢Q¢ and P¢R¢ is from Eq. (2.35)

cos q ¢ = 
( )

1 1 1(1 8 ) (1 2 ) 0
1 23/3 (1 3 ) 6 6

k k
k k

⎡
+ + + +⎢+ + ⎣

1 1 1 10 0 4
6 6 6 6

k k k
⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + + + + ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎦

 = 0.8144 and q  = 35.5°

2.12 PRINCIPAL AXES OF STRAIN AND
PRINCIPAL STRAINS

It was shown in Sec. 2.5 that when a displacement field is defined at a point P, the
relative extension (i.e. strain) at P in the direction PQ is given by Eq. (2.20) as

ePQ = exx
2
xn  + eyy

2
yn  + ezz

2
zn  + gxynxny + gyznynz + gxznxnz

As the values of nx, ny and nz change, we get different values of strain ePQ. Now
we ask ourselves the following questions:

What is the direction (nx, ny, nz) along which the strain is an extremum
(i.e. maximum or minimum) and what is the corresponding extremum value?

According to calculus, in order to find the maximum or the minimum, we would
have to equate,

∂ePQ/∂nx , ∂ePQ/∂ny , ∂ePQ/∂nz,
to zero, if nx, ny and nz were all independent. However, nx, ny and nz are not all
independent since they are related by the condition

2 2 2
x y zn n n+ +  = 1 (2.37)
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Taking nx and ny as independent and differentiating Eq. (2.37) with respect to nx
and ny we get

2nx + 2nz
z

x

n
n

∂
∂

= 0

2ny + 2nz
z

y

n
n

∂
∂

= 0
(2.38)

Differentiating ePQ with respect to nx and ny and equating them to zero for
extremum

0 = 2nxexx + nygxy + nzgzx + z

x

n
n

∂
∂

 (nxgzx + nygzy + 2nzezz)

0 = 2nyeyy + nxgxy + nzgyz + z

y

n
n

∂
∂

 (nxgzx + nygzy + 2nzezz)

Substituting for ∂ nz/∂ nx and ∂ nz/∂ ny from Eqs (2.38),

2 x xx y xy z zx

x

n n n
n

ε γ γ+ +
= 

2x zx y zy z zz

z

n n n
n

γ γ ε+ +

2 y yy x xy z yz

y

n n n
n

ε γ γ+ +
= 

2x zx y zy z zz

z

n n n
n

γ γ ε+ +

Denoting the right-hand side expression in the above two equations by 2e and
rearranging,

2exxnx + gxyny + gxznz – 2enx = 0 (2.39a)
gxynx + 2eyyny + gyznz – 2 eny = 0 (2.39b)

and gzxnx + gzyny + 2ezznz – 2enz = 0 (2.39c)
One can solve Eqs (2.39a)–(2.39c) to get the values of nx, ny and nz, which deter-
mine the direction along which the relative extension is an extremum. Let us
assume that this direction has been determined. Multiplying the first equation by
nx, second by ny and the third by nz and adding them, we get

2(exx
2
xn  + eyy

2
yn + ezz

2
zn  + gxynxny + gyznynz + gzxnznx) = 2e ( 2 2 2

x y zn n n+ + )

If we impose the condition 2 2 2
x y zn n n+ +  = 1, the right-hand side becomes equal to

2e. From Eq. (2.20), the left-hand side is the expression for 2ePQ. Therefore
ePQ = e

This means that in Eqs (2.39a)–(2.39c) the values of nx, ny and nz determine the
direction along which the relative extension is an extremum and further, the value
of e is equal to this extremum. Equations (2.39a)–(2.39c) can be written as

(exx – e)nx + 1
2

gxyny + 1
2

gxznz = 0

1
2

gyxnx + (eyy – e)ny + 1
2

gyznz = 0 (2.40a)

1
2

gzxnx + 1
2

gzyny + (ezz – e)nz = 0
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If we adopt the notation given in Eq. (2.22), i.e. put

1
2

gxy = exy,
1
2

gyz = eyz,
1
2

gzx =  ezx

then Eqs (2.40a) can be written as
(exx – e)nx + exyny + exznz = 0
eyxnx + (eyy – e)ny + eyznz = 0 (2.40b)
ezxnx + ezyny + (ezz – e)nz = 0

The above set of equations is homogeneous in nx, ny and nz. For the existence of
a non-trivial solution, the determinant of its coefficient must be equal to zero, i.e.

( )

( ) 0

( )

xx xy xz

yx yy yz

zx zy zz

e e

e e

e e

ε ε

ε ε

ε ε

−

− =

−

(2.41)

Expanding the determinant, we get
e3 – J1e2 + J2e – J3 = 0 (2.42)

where
J1 = exx + eyy + ezz (2.43)

J2 = 
xx xy yy yz xx xz

zx zzyx yy zy zz

e e e
ee e

ε ε ε
εε ε

+ + (2.44)

J3 = 

xx xy xz

yx yy yz

zx zy zz

e e

e e

e e

ε

ε

ε
(2.45)

It is important to observe that J2 and J3 involve exy, eyz and ezx not gxy, gyz and gzx.
Equations (2.41)–(2.45) are all similar to Eqs (1.8), (1.9), (1.12), (1.13) and (1.14). The
problem posed and its analysis are similar to the analysis of principal stress axes and
principal stresses. The results of Sec. 1.10–1.15 can be applied to the case of strain.

For a given state of strain at point P, if the relative extension (i.e. strain) e is an
extremum in a direction n, then e is the principal strain at P and n is the principal
strain direction associated with e.

In every state of strain there exist at least three mutually perpendicular princi-
pal axes and at most three distinct principal strains. The principal strains e1, e2
and e3, are the roots of the cubic equation.

e 3 – J1e
2 + J2e – J3 = 0 (2.46)

where J1, J2, J3 are the first, second and third invariants of strain. The principal
directions associated with e1, e2 and e3 are obtained by substituting ei (i = 1, 2, 3)
in the following equations and solving for nx, ny and nz.

(exx – ei)nx + exy ny + exznz = 0
exynx + (eyy – ei)ny + eyznz = 0 (2.47)

n2
x + n2

y + n2
z = 1


