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If e1, e2 and e3 are distinct, then the axes of n1, n2 and n3 are unique and mutually
peprendicular. If, say e1 = e2 π e3, then the axis of n3 is unique and every direction
perpendicular to n3 is a principal direction associated with e1 = e2.

If e1 = e2 = e3, then every direction is a principal direction.

Example 2.8 The displacement field in micro units for a body is given by

u = (x2 + y)i + (3 + z) j + (x2 + 2y)k
Determine the principal strains at (3, 1, –2) and the direction of the minimum
principal strain.

Solution The displacement components in micro units are,
ux = x2 + y, uy = 3 + z, uz = x2 + 2y.

The rectangular strain components are

exx = 2 , 0, 0yx z
yy zz

uu ux
x y z

∂∂ ∂
ε ε

∂ ∂ ∂
= = = = =

gxy = 1, 3, 2y yx xz z
yz zx

u uu uu u x
y x z y x z

∂ ∂∂ ∂∂ ∂
γ γ

∂ ∂ ∂ ∂ ∂ ∂
+ = = + = = + =

At point (3, 1, –2) the strain components are therefore,
exx = 6, eyy = 0, ezz = 0
gxy = 1, gyz = 3, gzx = 6

The strain invariants from Eqs (2.43) – (2.45) are
J1 = exx + eyy + ezz = 6

J2 = 
1 3 6 36 0
2 2 23

21 3 3 00 0
2 2

+ + = −

Note that J2 and J3 involve , ,
1 1 1
2 2 2xy xy yz yz zx zxe e eγ γ γ= = =

J3 = 

16 3
2

1 30 9
2 2

33 0
2

= −

The cubic from Eq. (2.46) is

3 2 236 9 0
2

ε ε ε− − + =

Following the standard method suggested in Sec. 1.15

a = ( )1 69 4736
3 2 2

− − = −

b = ( )1 432 621 243 30
27

− − + = −
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cos f = 
3

30 0.684
2 /27

−− =
× − a

\ f =  46°48¢

g = 2 /3 5.6a− =

The principal strains in micro units are
e1 = cos /3 2 7.39g φ + = +

e 2 = cos ( /3 120 ) 2 2g φ + ° + = −

e3 = cos ( /3 240 ) 2 0.61g φ + ° + = +
As a check, the first invariant J1 is

exx + eyy + ezz = e1 + e2 + e3 = 7.39 – 2 + 0.61 = 6
The second invariant J2 is

e1e2 + e2e3 + e3e1 = –14.78 – 1.22 + 4.51 = –11.49
The third invariant J3 is

e1e2e3 = 7.39 ¥ 2 ¥ 0.61 =  – 9
These agree with the earlier values.
The minimum principal strain is –2. For this, from Eq. (2.47)

1(6 2) 3
2x y zn n n+ + + = 0

1 32
2 2x y zn n n+ + = 0

2 2 2
x y zn n n+ + = 1

The solutions are nx = 0.267, ny = 0.534 and nz = – 0.801.

Example 2.9 For the state of strain given in Example 2.5, determine the
principal strains and the directions of the maximum and minimum principal
strains.

Solution From the strain matrix given, the invariants are

J1 = exx + eyy + ezz = 0.02 + 0.06 + 0 = 0.08

J2 = 
0.02 0.02 0.06 0.01 0.02 0
0.02 0.06 0.01 0 0 0

− −
+ +

− −

= (0.0012 – 0.0004) + (– 0.0001) + 0 = 0.0007

J3 = 
0.02 0.02 0
0.02 0.06 0.01 0.02 ( 0.0001) 0 0 0.000002
0 0.01 0

−
− − = − + + = −

−

The cubic equation is
e3 – 0.08e 2 + 0.0007e + 0.000002 = 0
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Following the standard procedure described in Sec. 1.15, one can determine the
principal strains. However, observing that the constant J3 in the cubic is very
small, one can ignore it and write the cubic as

e2 – 0.08e2 + 0.0007e = 0
One of the solutions obviously is e = 0. For the other two solutions (e not equal
to zero), dividing by e

e2 – 0.08 e + 0.0007 = 0
The solutions of this quadratic equation are

e = 0.4 ± 0.035, i.e.   0.075 and 0.005
Rearranging such that e1 ≥ e2 ≥ e3, the principal strains are

e1 = 0.07, e2 = 0.01, e3 = 0
As a check:

J1 = e1 + e2 + e3 = 0.07 + 0.01 = 0.08
J2 = e1e2 + e2e2 + e3e1 = (0.07 ¥ 0.01) = 0.0007
J3 = e1e2e3 = 0 (This was assumed as zero)

Hence, these values agree with their previous values. To determine the direction
of e1 = 0.07, from Eqs (2.47)

(0.02 – 0.07) nx – 0.02ny = 0
– 0.02nx + (0.06 – 0.07) ny – 0.01nz = 0

2 2 2
x y zn n n+ + = 1

The solutions are nx = 0.44, ny = – 0.176 and nz = 0.88.
Similarly, for e3 = 0, from Eqs (2.47)

0.02nx – 0.02ny = 0
–0.02nx + 0.06ny – 0.01nz = 0

2 2 2
x y zn n n+ + = 1

The solutions are nx = ny = 0.236 and nz = 0.944.

2.13 PLANE STATE OF STRAIN
If, in a given state of strain, there exists a coordinate system Oxyz, such that for
this system

 ezz = 0, gyz = 0, gzx = 0 (2.48)
then the state is said to have a plane state of strain parallel to the xy plane. The
non-vanishing strain components are exx, eyy and gxy.

If PQ is a line element in this xy plane, with direction cosines nx, ny, then the
relative extension or the strain ePQ is obtained from Eq. (2.20) as

2 2
PQ xx x yy y xy x yn n n nε ε ε γ= + +

or if PQ makes an angle q with the x axis, then

2 2 1cos sin sin 2
2PQ xx yy xyε ε θ ε θ γ θ= + + (2.49)
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If e1 and e2 are the principal strains, then
1/ 22 2

1 2, ,
2 2 2

xx yy xx yy xyε ε ε ε γ
ε ε

⎡ ⎤+ −⎛ ⎞ ⎛ ⎞⎢ ⎥= ± +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

(2.50)

Note that e3 = ezz is also a principal strain. The principal strain axes make angles f
and f + 90∞ with the x axis, such that

tan 2 xy

xx yy

γ
φ

ε ε
=

−
(2.51)

The discussions and conclusions will be identical with the analysis of stress if we

use exx, eyy, and ezz in place of sx, sy and sz respectively, and exy = 1
2

 gxy ,

eyz = 1
2

 gyz, ezx = 1
2

 gzx in place of txy, tyz and tzx respectively.

2.14 THE PRINCIPAL AXES OF STRAIN REMAIN
ORTHOGONAL AFTER STRAIN

Let PQ be one of the principal extensions or strain axes with direction cosines nx1,
ny1 and nz1. Then according to Eqs (2.40b)

(exx – e1)nx1 + exyny1 + exznz1 = 0
exynx1 + (eyy – e1)ny1 + eyznz1 = 0
exznx1 + eyzny1 + (ezz – e1)nz1 = 0

Let nx2, ny2 and nz2 be the direction cosines of a line PR, perpendicular to PQ
before strain. Therefore,

nx1nx2 + ny1ny2 + nz1nz2 = 0
Multiplying Eq. (2.40b), given above, by nx2, ny2 and nz2 respectively and adding,
we get,

exxnx1nx2 + eyyny1ny2 + ezznz1nz2 + exy(nx1ny2 + ny1nx2) + eyz (ny1nz2 + ny2nz1)
+ ezx (nx1nz2 + nx2nz1) = 0

Multiplying by 2 and putting
2exy = gxy, 2eyz = gyz, 2ezx = gzx

we get
2exxnx1nx2 + 2eyyny1ny2 + 2ezznz1nz2 + gxy (nx1ny2 + ny1nx2)

+ gyz (ny1nz2 + ny2nz1) + gzx (nx1nz2 + nz1nx2) = 0
Comparing the above with Eq. (2.36a), we get

cos q ¢ (1 + ePQ) (1 + ePR) = 0
where q ¢ is the new angle between PQ and PR after strain.

Since ePQ and ePR are quite general, to satisfy the equation, q ¢ = 90∞, i.e. the
line segments remain perpendicular after strain also. Since PR is an arbitrary
perpendicular line to the principal axis PQ, every line perpendicular to PQ before
strain remains perpendicular after strain. In particular, PR can be the second
principal axis of strain.

Repeating the above steps, if PS is the third principal axis of strain perpendicu-
lar to PQ and PR, it remains perpendicular after strain also. Therefore, at point P,
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we can identify a small rectangular element, with faces normal to the principal axes
of strain, that will remain rectangular after strain also.

2.15 PLANE STRAINS IN POLAR COORDINATES
We now consider displacements and deformations of a two-dimensional
radial element in polar coordinates. The polar coordinates of a point a are

,r
r

ur r u r rr r
∂ ∂αθ α
∂ ∂

⎛ ⎞+ ∆ + + ∆ + + ∆⎜ ⎟
⎝ ⎠

The length of a¢b¢ is therefore
rur rr

∂
∂

∆ + ∆
The radial strain er is therefore

r
r

u
r

∂
ε

∂
= (2.52)

The circumferential strain eq is caused in two ways. If the element abcd under-
goes a purely radial displacement, then the length ad = r Dq changes to (r + ur)Dq.
The strain due to this radial movement alone is

r ru u
r r

θ
θ
∆

=
∆

In addition to this, the point d moves circumferentially to d ¢ through the distance
uu θ

θ
∂

θ
∂θ

+ ∆

Since point a moves circumferentially through uq , the change in ad is
uθ
θ

∂
∂

 Dq. The strain due to this part is

1u u
r r

θ θ∂ ∂θ
∂θ θ ∂θ

∆ =
∆

The total circumferential strain is therefore
1r uu

r r
θ

θ
∂

ε
∂θ

= + (2.53)
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Fig. 2.7 Displacement components of a radial
 element

r and q. The radial and cir-
cumferential displacements
are denoted by ur and uq .
Consider an elementary ra-
dial element abcd, as shown
in Fig. 2.7.

Point a with coordinates
(r, q ) gets displaced after
deformation to position a¢
with coordinates (r  +  ur,
q + a). The neighbouring
point  b (r  +  Dr ,  q )  gets
moved to b¢ with coordinates

Chapter_02.pmd 7/3/2008, 5:32 AM85
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To determine the shear strain we observe the following:
The circumferential displacement of a is uq , whereas that of b is

uq + u
r
θ∂

∂
 Dr. The magnitude of q2 is

( ) 1u
u r r r

r r
θ

θ
∂

α
∂

⎡ ⎤⎛ ⎞+ ∆ − + ∆⎢ ⎥⎜ ⎟ ∆⎝ ⎠⎣ ⎦

But a = .
u
r
θ

Hence, q2 = 1u u
u r u r

r r r
θ θ

θ θ
∂
∂

⎛ ⎞+ ∆ − − ∆⎜ ⎟ ∆⎝ ⎠
u u
r r
θ θ∂

∂
= −

Similarly, the radial displacement of a is ur, whereas that of d is ur + ru∂
∂θ

Dq.

Hence,

q1 = 1 r
r r

u
u u

r θ
∂

θ ∂θ
⎡ ⎤⎛ ⎞+ ∆ −⎢ ⎥⎜ ⎟∆ ⎝ ⎠⎣ ⎦

1 ru
r
∂
∂θ

=

Hence, the shear strain grq is

1 2
1 r

r
u uu

r r r
θ θ

θ
∂∂

γ θ θ
∂θ ∂

= + = + − (2.54)

2.16 COMPATIBILITY CONDITIONS
It was observed that the displacement of a point in a solid body can be repre-
sented by a displacement vector u, which has components,

ux, uy, uz.
along the three axes x, y and z respectively. The deformation at a point is specified
by the six strain components,

exx, eyy, ezz, gxy, gyz and gzx.
The three displacement components and the six rectangular strain components
are related by the six strain displacement relations of Cauchy, given by Eqs (2.18)
and (2.19). The determination of the six strain components from the three displace-
ment functions is straightforward since it involves only differentiation. However,
the reverse operation, i.e. determination of the three displacement functions from
the six strain components is more complicated since it involves integrating six
equations to obtain three functions. One may expect, therefore, that all the six
strain components cannot be prescribed arbitrarily and there must exist certain
relations among these. The total number of these relations are six and they fall
into two groups.



Analysis of Strain 87

First group: We have

, ,y yx x
xx yy xy

u uu u
x y y x

∂ ∂∂ ∂
ε ε γ

∂ ∂ ∂ ∂
= = = +

Differentiate the first two of the above equations as follows:
2 3 2

2 2
xx x xu u

x y yy x y
∂ ε ∂ ∂∂

∂ ∂ ∂∂ ∂ ∂
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

2 3 2

2 2
yy y yu u

x y xx y x

∂ ε ∂ ∂∂
∂ ∂ ∂∂ ∂ ∂

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
Adding these two, we get

22 y xyx uu
x y y x x y

∂ ∂ γ∂∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠

i.e.
2 22

2 2
yy xyxx

x yy x

∂ ε ∂ γ∂ ε
∂ ∂∂ ∂

+ =

Similarly, by considering eyy, ezz and gyz, and ezz, exx and gzx, we get two more
conditions. This leads us to the first group of conditions.

2 22

2 2
yy xyxx

x yy x

∂ ε ∂ γ∂ ε
∂ ∂∂ ∂

+ =

2 22

2 2
yy yzzz

y zz y

∂ ε ∂ γ∂ ε
∂ ∂∂ ∂

+ = (2.55)

2 22

2 2
xx zxzz

z xx z
∂ ε ∂ γ∂ ε

∂ ∂∂ ∂
+ =

Second group: This group establishes the conditions among the shear strains.
We have

gxy = yx uu
y x

∂∂
∂ ∂

+

gyz = y zu u
z y

∂ ∂
∂ ∂

+

gxz = xz uu
x z

∂∂
∂ ∂

+

Differentiating

xy

z
∂γ
∂

= 
22

yx uu
z y z x

∂∂
∂ ∂ ∂ ∂

+

yz

x
∂γ
∂

= 
2 2

y zu u
x z x y

∂ ∂
∂ ∂ ∂ ∂

+
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zx
y

∂γ
∂

= 
22

xz uu
x y y z

∂∂
∂ ∂ ∂ ∂

+

Adding the last two equations and subtracting the first
2

2yz xyzx zu
x y z x y

∂γ ∂γ∂γ ∂
∂ ∂ ∂ ∂ ∂

+ − =

Differentiating the above equation once more with respect to z and observing that
3

zu
x y z
∂

∂ ∂ ∂
= 

2
zz

x y
∂ ε
∂ ∂

we get,

yz xyzx
z x y z

∂γ ∂γ∂γ∂
∂ ∂ ∂ ∂

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
= 

3 2
2 2z zzu

x y z x y
∂ ∂ ε

∂ ∂ ∂ ∂ ∂
=

This is one of the required relations of the second group. By a cyclic change of
the letters we get the other two equations. Collecting all equations, the six strain
compatibility relations are

22

2 2
yyxx

y x

∂ ε∂ ε
∂ ∂

+ = 
2

xy

x y
∂ γ
∂ ∂

(2.56a)

2 2

2 2
yy zz

z y

∂ ε ∂ ε
∂ ∂

+ = 
2

yz

y z
∂ γ
∂ ∂

(2.56b)

22

2 2
xxzz

x z
∂ ε∂ ε

∂ ∂
+ = 

2
zx

z x
∂ γ
∂ ∂

(2.56c)

yz xyzx
z x y z

∂γ ∂γ∂γ∂
∂ ∂ ∂ ∂

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
= 

2
2 zz

x y
∂ ε
∂ ∂

(2.56d)

xy yzzx
x y z x

∂γ ∂γ∂γ∂
∂ ∂ ∂ ∂

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
= 

2
2 xx

y z
∂ ε
∂ ∂

(2.56e)

xy yz zx
y z x y

∂γ ∂γ ∂γ∂
∂ ∂ ∂ ∂

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
= 

2

2 yy

x z
∂ ε
∂ ∂

(2.56f)

The above six equations are called Saint-Venant’s equations of compatibility. We
can give a geometrical interpretation to the above equations. For this purpose,
imagine an elastic body cut into small parallelepipeds and give each of them the
deformation defined by the six strain components. It is easy to conceive that if the
components of strain are not connected by certain relations, it is impossible to
make a continuous deformed solid from individual deformed parallelepipeds. Saint-
Venant’s compatibility relations furnish these conditions. Hence, these equations
are also known as continuity equations.
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Example 2.10 For a circular rod subjected to a torque (Fig. 2.8), the displacement

(i) Select the constants a, b, c, e, f, k such that the end section z = 0 is fixed
in the following manner:
(a) Point o has no displacement.
(b) The element Dz of the axis rotates neither in the plane xoz nor in

the plane yoz
(c) The element Dy of the axis does not rotate in the plane xoy.

(ii) Determine the strain components.
(iii) Verify whether these strain components satisfy the compatibility conditions.

Solution
(i) Since point ‘o’ does not have any displacement

ux = c = 0, uy = f = 0, uz = k = 0
The displacements of a point Dz from ‘o’ are

, andyx zuu u
z z z

z z z
∂∂ ∂

∂ ∂ ∂
∆ ∆ ∆

Similarly, the displacements of a point Dy from ‘o’ are

, andyx zuu uy y y
y y y

∂∂ ∂
∂ ∂ ∂

∆ ∆ ∆

Hence, according to condition (b)

0 and, 0y xu u
z z

z z
∂ ∂
∂ ∂

∆ = ∆ =

and according to condition (c)

0xu
y

y
∂
∂

∆ =

Applying these requirements

yu
z

∂
∂

 at ‘o’ is e and hence, e = 0

xu
z

∂
∂

 at ‘o’ is b and hence, b = 0

xu
y

∂
∂

 at ‘o’ is a and hence, a = 0

Consequently, the displacement components are
ux = –t yz, uy = t xz and uz = 0

x

y

o
z

Fig. 2.8 Example 2.8

components at any point (x, y, z) are obtained as

ux = –t yz + ay + bz + c
uy = t xz – ax + ez + f
uz = – bx – ey + k

where a, b, c, e, f and k are
constants, and t is the shear
stress.



90 Advanced Mechanics of Solids

(ii) The strain components are

exx = 0, 0, 0;yx
yy zz

uu
x y

∂∂
ε ε

∂ ∂
= = = =

gxy = 0yx uu
z z

y x
∂∂

τ τ
∂ ∂

+ = − + =

gyz = y zu u
x

z x
∂ ∂

τ
∂ ∂

+ =

gzx = xz uu y
x z

∂∂
τ

∂ ∂
+ = −

(iii) Since the strain components are linear in x, y and z, the Saint-Venant’s
compatibility requirements are automatically satisfied.

2.17 STRAIN DEVIATOR AND ITS INVARIANTS
Similar to the analysis of stress, we can resolve the eij matrix into a spherical (i.e.
isotoropic) and a deviatoric part. The eij matrix is

xx xy xz

ij xy yy yz

xz yz zz

e e

e e e

e e

ε

ε

ε

⎡ ⎤
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

This can be resolved into two parts as

0 0
0 0
0 0

xx xy xz

ij xy yy yz

xz yz zz

e e e e
e e e e e

ee e e

ε

ε

ε

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥

⎡ ⎤ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

(2.57)

where ( )1
3 xx yy zze ε ε ε= + + (2.58)

represents the mean elongation at a given point. The second matrix on the right-
hand side of Eq. (2.57) is the spherical part of the strain matrix. The first matrix
represents the deviatoric part or the strain deviator. If an isolated element of the
body is subjected to the strain deviator only, then according to Eq. (2.34), the
volumetric strain is equal to

V
V
∆ = (exx – e) + (eyy – e) + (ezz – e)

= exx + eyy + ezz – 3e (2.59)
= 0

This means that an element subjected to deviatoric strain undergoes pure defor-
mation without a change in volume. Hence, this part is also known as the pure
shear part of the strain matrix. This discussion is analogous to that made in
Sec. 1.22. The spherical part of the strain matrix, i.e. the second matrix on the right-
hand side of Eq. (2.57) is an isotropic state of strain. It is called isotropic because
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when a body is subjected to this particular state of strain, then every direction is
a principal strain direction, with a strain of magnitude e, according to Eq. (2.20). A
sphere subjected to this state of strain will uniformally expand or contract and
remain spherical.

Consider the invariants of the strain deviator. These are constructed in the
same way as the invariants of the stress and strain matrices with an appropriate
replacement of notations.

(i) Linear invariant is zero since

1′J  ===== (exx – e) + (eyy – e) + (ezz – e) = 0 (2.60)
(ii) Quadratic invariant is

2′J = 
xx xy yy yz xx xz

xz zzxy yy yz zz

e e e e e e
e ee e e e

ε ε ε
εε ε

− −⎡ ⎤ ⎡ ⎤ −⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−− −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

( ) ( ) ( )2 2 21
6 xx yy yy zz zz xxε ε ε ε ε ε⎡= − − + − + −⎢⎣

        (2.61)

( )26 xy yx zxe e e ⎤+ + + ⎥⎦
(iii) Cubic invariant is

3

xx xy xz

xy yy yz

xz zy zz

e e e

J e e e

e e e

ε

ε

ε

⎡ ⎤−
⎢ ⎥

= −′ ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

(2.62)

The second and third invariants of the deviatoric strain matrix describe the two
types of distortions that an isolated element undergoes when subjected to the
given strain matrix eij.

2.1 The displacement field for a body is given by
u = (x2 + y)i + (3 + z)j + (x2 + 2y)k

Write down the displacement gradient matrix at point (2, 3, 1).

4 1 0
. 0 0 1

4 2 0
Ans
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

2.2 The displacement field for a body is given by
u = [(x 2 + y 2 + 2)i + (3x + 4y 2) j + (2x 3 + 4z)k]10–4

What is the displaced position of a point originally at (1, 2, 3)?
[Ans. (1.0007, 2.0019, 3.0014)]

2.3 For the displacement field given in Problem 2.2, what are the strain compo-
nents at (1, 2, 3). Use only linear terms.
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⎡
⎢⎣

Ans. exx = 0.0002, eyy = 0.0016, ezz = 0.0004 ⎤
⎥⎦gxy = 0.0007, gyz = 0, gzx = 0.0006

2.4 What are the strain acomponents for Problem 2.3, if non-linear terms are also
included?

⎡
⎢⎣

Ans. Exx = 2p + 24.5p2, Eyy = 16p + 136p2, Ezz = 4p + 8p2 ⎤
⎥⎦Exy = 7p + 56p2, Eyz = 0, Ezx = 6p + 24p2 where p = 10–4

2.5 If the displacement field is given by
ux = kxy, uy = kxy, uz = 2k(x + y)z

where k is a constant small enough to ensure applicability of the small
deformation theory,
(a) write down the strain matrix
(b) what is the strain in the direction nx = ny = nz = 1/ 3 ?

 

2
. ( ) 2

2 2 2( )
4( ) ( )
3

ij

PQ

y x y z
Ans a k x y x z

z z x y
kb x y z

ε

ε

⎡ ⎤+⎡ ⎤
⎢ ⎥⎢ ⎥⎡ ⎤ = +⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎢ ⎥+⎣ ⎦⎢ ⎥
⎢ ⎥= + +
⎣ ⎦

2.6 The displacement field is given by
ux = k(x2 + 2z), uy = k(4x + 2y2 + z), uz = 4kz2

k is a very small constant. What are the strains at (2, 2, 3) in directions

 (a) nx = 0, ny = 1/ 2 , nz = 1/ 2
 (b) nx = 1, ny = nz = 0
(c) nx = 0.6, ny = 0, nz = 0.8

33. (a) , (b) 4 , (c) 17.76
2

Ans k k k⎡ ⎤
⎢ ⎥⎣ ⎦

2.7 For the displacement field given in Problem 2.6, with k = 0.001, determine the
change in angle between two line segments PQ and PR at P(2, 2, 3) having
direction cosines before deformation as

(a) PQ: nx1 = 0, ny1 = nz1 = 1
2

PR: nx2 = 1, ny2 = nz2 = 0

(b) PQ: nx1 = 0, ny1 = nz1 = 1
2

PR: nx2 = 0.6, ny2 = 0, nz2 = 0.8
⎡
⎢⎣

Ans. (a) 90∞ – 89.8∞ = 0.2∞ ⎤
⎥⎦(b) 55.5∞ – 50.7∞ = 4.8∞

2.8. The rectangular components of a small strain at a point is given by the
following matrix. Determine the principal strains and the direction of the
maximum unit strain (i.e. emax).

1 0 0
0 0 4
0 4 3

ij pε
⎡ ⎤
⎢ ⎥⎡ ⎤ = −⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

 where p = 10–4
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⎡
⎢
⎢
⎢
⎣

Ans. e1 = 4p, e2 = p, e3 = –p ⎤
⎥
⎥
⎥
⎦

for e1 : nx = 0, ny = 0.447, nz = 0.894
for e2 : nx = 1, ny = nz = 0
for e3 : nx = 0, ny = 0.894, nz = 0.447

2.9 For the following plane strain distribution, verify whether the compatibility
condition is satisfied:

exx = 3x2y, eyy = 4y2x + 10–2, gxy = 2xy + 2x3

[Ans. Not satisfied]
2.10 Verify whether the following strain field satisfies the equations of compat-

ibility. p is a constant:
exx = py, eyy = px, ezz = 2p(x + y)
gxy = p(x + y), eyz = 2pz, ezx = 2pz [Ans. Yes]

2.11 State the conditions under which the following is a possible system of
strains:

exx = a + b(x2 + y2) x4 + y4, gyz = 0
eyy = a + b (x2 + y2) + x4 + y4, gzx = 0
gxy = A + Bxy (x2 + y2 – c 2), ezz = 0

[Ans. B = 4; b + b + 2c2 = 0]
2.12 Given the following system of strains

exx = 5 + x2 + y2 + x4 + y4

eyy = 6 + 3x2 + 3y2 + x4 + y4

gxy = 10 + 4xy (x2 + y2 + 2)
ezz = gyz = gzx = 0

determine whether the above strain field is possible. If it is possible, deter-
mine the displacement components in terms of x and y, assuming that ux = uy
= 0 and wxy = 0 at the origin.

⎡
⎢
⎢
⎢
⎣

Ans. It is possible. 3 2 5 41 15
3 5xu x x xy x xy cy= + + + + + ⎤

⎥
⎥
⎥
⎦

2 3 4 516 3
5yu y x y y x y y cx= + + + + +

2.13 For the state of strain given in Problem 2.12, write down the spherical part
and the deviatoric part and determine the volumetric strain.

⎡
⎢
⎢
⎢
⎢
⎢⎣

Ans. Components of spherical part are ⎤
⎥
⎥
⎥
⎥
⎥⎦

e = 1
3

[11 + 4(x2 + y2) + 2(x4 + y4)]

 Volumetric strain = 11 + 4(x2 +y2) + 2(x4 + y4)



AppendixAppendixAppendixAppendixAppendix

On Compatibility Conditions

It was stated in Sec. 2.16 that the six strain components eij (i.e., exx = exx, eyy = eyy,

ezz = ezz, exy = 1
2 xyγ , eyz = 1

2 zyγ , ezx = 1
2 zxγ ) should satisfy certain necessary

conditions for the existence of single-valued, continuous displacement functions,
and these were called compatibility conditions. In a two-dimensional case, these
conditions reduce to

2 22

2 2 2yy xyxx e ee
x yy x

∂ ∂∂
+ =

∂ ∂∂ ∂

Generally, these equations are obtained by differentiating the expressions for
exx, eyy, exy, and showing their equivalence in the above manner. However, their
requirement for the existence of single-value displacement is not shown. In this

section, this aspect will be treated
for the plane case.

Let P(x1 - y1) be some point in a
simply connected region at which
the displacement (u°x, u°y) are known.
We try to determine the displace-
ments (ux, uy) at another point Q in
terms of the known functions exx, eyy,
exy, w xy by means of a line integral
over a simple continuous curve C
joining the points P and Q.

Consider the displacement ux

ux(x2, y2) = u°x +
Q

x
P

du∫ (A.1)

Fig. A.1 Continuous curve connecting
P and Q in a simply
connected body.

P(x1, y2)

Q(x2, y2)

Since, dux = x xu u
dx dyx y

∂ ∂
+

∂ ∂

 ux(x2, y2) = u°x +
Q Q

x x

P P

u u
dx dyx y

∂ ∂
+

∂ ∂∫ ∫

  = u°x +
Q Q

x
xx x

P P

u
e d dyy

∂
+

∂∫ ∫

y

x
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Now,    
1 1
2 2

y yx x xu uu u u
y y x y x

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 = exy - w yx  from equations (2.22) and (2.25).

\  ux(x2, y2) = u°x  +
Q Q Q

xx xy yx
P P P

e dx e dy dy+ − ω∫ ∫ ∫ (A.2)

Integrating by parts, the last integral on the right-hand side

  ( ) ( )
Q Q Q

yx yx yx
P P P

dy y ydω ω ω= −∫ ∫ ∫

( )
QQ

yx yx
yx

P P
y y dx dyx y

ω ω
ω

∂ ∂⎛ ⎞
= − +⎜ ⎟∂ ∂⎝ ⎠

∫   (A.3)

Substituting, Eq. (A.2) becomes

ux(x2, y2) = u°x + ( )
Q Q QQ

yx yx
xx xy yx

PP P P
e dx e dx y y dx dyx y

ω ω
ω

∂ ∂⎛ ⎞
+ − − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ (A.4)

Now consider the terms in the last integral on the right-hand side.

  
1
2

yx yx uu
x x y x

ω∂ ∂⎛ ⎞∂∂= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

1 1
2 2

yx x xuu u u
x y x y x x

∂⎛ ⎞∂ ∂ ∂⎛ ⎞∂ ∂= − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

adding and subtracting 
1 .2

xu
y x

∂⎛ ⎞∂
⎜ ⎟∂ ∂⎝ ⎠

Since the order of differentiation is immaterial.

 

1 1
2 2

yx yx x x

xx xy

uu u u
x y x x x y x

e ey x

ω∂ ∂⎛ ⎞∂ ∂ ∂⎛ ⎞∂ ∂= + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂= −
∂ ∂

(A.5)

Similarly,

  

1
2

1 1
2 2

1 1
2 2

xy yx

y y yx

y y yx

xy yy

uu
y y y x

u u uu
y y x x y y

u u uu
y y x x y y

e ey x

ω∂ ∂⎛ ⎞∂∂= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂∂ ∂= − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂∂ ∂= + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂= −
∂ ∂

(A.6)
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Substituting (A.5) and (A.6) in (A.4)

ux(x2, y2) = u°x - (yw yx)
Q QQ

xx xy
P P P

e dx e dy+ +∫ ∫

    
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂− − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ∂ ∂ ⎠ ⎝ ∂ ∂ ⎠⎣ ⎦

∫ xx xy yx yyy e e dx e e dyy x y x
Regrouping,

ux(x2, y2) =  u°x - (yw yx)
QQ

xyxx
xx

P P

ee
e y y dxy x

∂⎡ ⎤∂
+ − +⎢ ⎥∂ ∂⎣ ⎦
∫

∂ ∂⎡ ⎤
+ − +⎢ ⎥∂ ∂⎣ ⎦
∫
Q

yx yy
xy

P

e e
e y y dyy x      (A.7)

Since the displacement is single–valued, the integral should be independent of
the path of integration. This means that the integral is a perfect differential. This
means

xy yx yyxx
xx xy

e e ee
e y y e y yy y x x y x

∂ ∂ ∂⎡ ⎤ ⎡ ⎤∂∂ ∂− + = − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

i.e.,
2 2 22

2 2
xy xy xy xy yyxx xx xx e e e e ee e e

y y y yy y x x y x x yy x

∂ ∂ ∂ ∂ ∂∂ ∂ ∂
− − + + = − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

Since exy = eyx, the above equation reduces to

2 22

2 2 2yy xyxx e ee
x yy x

∂ ∂∂
+ =

∂ ∂∂ ∂
(A.8)

An identical expression is obtained while
considering the displacement uy (x2, y2).
Hence, the compatibility condition is a
necessary and sufficient condition for the
existence of single-valued displacement
functions in simply connected bodies. For
a multiply connected body, it is a neces-
sary but not a sufficient condition. A mul-
tiply connected body can be made simply
connected by a suitable cut. The displace-
ment functions will then become single-
valued when the path of integration does
not pass through the cut.

Fig. A.2 Continuous curve
 connecting P and Q but
 not passing through the
 cut of multiply connected

 body

Q

P

Chapter_02.pmd 7/3/2008, 5:34 AM96



Stress–Strain Relations
for Linearly Elastic
Solids 3

CHAPTER

3.1 INTRODUCTION
In the preceding two chapters we dealt with the state of stress at a point and the
state of strain at a point. The strain components were related to the displacement
components through six of Cauchy’s strain-displacement relationships. In this
chapter, the relationships between the stress and strain components will be estab-
lished. Such equations are termed constitutive equations. They depend on the
manner in which the material resists deformation.

The constitutive equations are mathematical descriptions of the physical phe-
nomena based on experimental observations and established principles.
Consequently, they are approximations of the true behavioural pattern, since an
accurate mathematical representation of the physical phenomena would be too
complicated and unworkable.

The constitutive equations describe the behaviour of a material, not the
behaviour of a body. Therefore, the equations relate the state of stress at a point
to the state of strain at the point.

3.2 GENERALISED STATEMENT OF HOOKE’S LAW
Consider a uniform cylindrical rod of diameter d subjected to a tensile force P.
As is well known from experimental observations, when P is gradually
increased from zero to some positive value, the length of the rod also in-
creases. Based on experimental observations, it is postulated in elementary
strength of materials that the axial stress s is proportional to the axial strain e
up to a limit called the proportionality limit. The constant of proportionality is
the Young’s Modulus E, i.e.

e = 
σ
E or s = Ee (3.1)

It is also well known that when the uniform rod elongates, its lateral dimensions,
i.e. its diameter, decreases. In elementary strength of materials, the ratio of lateral
strain to longitudinal strain was termed as Poisson’s ratio n. We now extend this
information or knowledge to relate the six rectangular components of stress to the
six rectangular components of strain. We assume that each of the six independent
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components of stress may be expressed as a linear function of the six components
of strain and vice versa.

The mathematical expressions of this statement are the six stress–strain
equations:

sx = 11 12 13 14 15 16xx yy zz xy yz zxa a a a a aε ε ε γ γ γ+ + + + +

sy = 21 22 23 24 25 26xx yy zz xy yz zxa a a a a aε ε ε γ γ γ+ + + + +

sz = 31 32 33 34 35 36xx yy zz xy yz zxa a a a a aε ε ε γ γ γ+ + + + + (3.2)

txy = 41 42 43 44 45 46xx yy zz xy yz zxa a a a a aε ε ε γ γ γ+ + + + +

tyz = 51 52 53 54 55 56ε ε ε γ γ γ+ + + + +xx yy zz xy yz zxa a a a a a

tzx = 61 62 63 64 65 66xx yy zz xy yz zxa a a a a aε ε ε γ γ γ+ + + + +

Or conversely, six strain-stress equations of the type:

exx = 11 12 13 14 15 16x y z xy yz zxb b b b b bσ σ σ τ τ τ+ + + + + (3.3)
eyy = . . . etc

where a11, a12, b11, b12, . . . , are constants for a given material. Solving
Eq. (3.2) as six simultaneous equations, one can get Eq. (3.3), and vice versa. For
homogeneous, linearly elastic material, the six Eqs (3.2) or (3.3) are known as
Generalised Hooke’s Law. Whether we use the set given by Eq. (3.2) or that given
by Eq. (3.3), 36 elastic constants are apparently involved.

3.3 STRESS–STRAIN RELATIONS FOR ISOTROPIC
MATERIALS

We now make a further assumption that the ideal material we are dealing with has
the same properties in all directions so far as the stress-strain relations are con-
cerned. This means that the material we are dealing with is isotropic, i.e. it has no
directional property.

Care must be taken to distinguish between the assumption of isotropy, which
is a particular statement regarding the stress-strain properties at a given point,
and that of homogeneity, which is a statement that the stress-strain properties,
whatever they may be, are the same at all points. For example, timber of regular
grain is homogeneous but not isotropic.

Assuming that the material is isotropic, one can show that only two indepen-
dent elastic constants are involved in the generalised statement of Hooke’s law.
In Chapter 1, it was shown that at any point there are three faces (or planes) on
which the resultant stresses are wholly normal, i.e. there are no shear stresses on
these planes. These planes were termed the principal planes and the stresses
on these planes the principal stresses. In Sec. 2.14, it was shown that at any point
one can identify before strain, a small rectangular parallelepiped or a box which
remains rectangular after strain. The normals to the faces of this box were called
the principal axes of strain. Since in an isotropic material, a small rectangular box
the faces of which are subjected to pure normal stresses, will remain rectangular
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after deformation (no asymmetrical deformation), the normal to these faces
coincide with the principal strain axes. Hence, for an isotropic material, one can relate
the principal stresses s1, s2, s3 with the three principal strains e1, e2 and e3 through
suitable elastic constants. Let the axes x, y and z coincide with the principal stress and
principal strain directions. For the principal stress s1 the equation becomes

s1 = ae1 + be2 + ce3

where a, b and c are constants. But we observe that b and c should be equal since
the effect of s1 in the directions of e2 and e3, which are both at right angles to s1,
must be the same for an isotropic material. In other words, the effect of s1 in any
direction transverse to it is the same in an isotropic material. Hence, for s1 the
equation becomes

s1 = ae1 + b(e2 + e3)
= (a – b)e1 + b(e1 + e2 + e3)

by adding and subtracting be1. But (e1 + e2 + e3) is the first invariant of strain J1
or the cubical dilatation D. Denoting b by l and (a – b) by 2m, the equation for s1
becomes

s1 = lD + 2me1 (3.4a)
Similarly, for s2 and s3 we get

s2 = lD + 2me2 (3.4b)
s3 = lD + 2me3 (3.4c)

The constants l and m are called Lame’s coefficients. Thus, there are only two
elastic constants involved in the relations between the principal stresses and
principal strains for an isotropic material. As the next sections show, this can be
extended to the relations between rectangular stress and strain components also.

3.4 MODULUS OF RIGIDITY
Let the co-ordinate axes Ox, Oy, Oz coincide with the principal stress axes. For an
isotropic body, the principal strain axes will also be along Ox, Oy, Oz. Consider
another frame of reference Ox¢, Oy¢, Oz¢, such that the direction cosines of Ox¢ are
nx1, ny1, nz1 and those of Oy¢ are nx2, ny2, nz2. Since Ox¢ and Oy¢ are at right angles
to each other.

nx1nx2 + ny1ny2 + nz1nz2 = 0 (3.5)
The normal stress sx¢ and the shear stress tx¢y¢ are obtained from Cauchy’s formula,
Eqs. (1.9). The resultant stress vector on the x¢ plane will have components as

'
1 1 1 2 1 3, ,

x x x
x y zx y zT n T n T nσ σ σ

′ ′
= = =

These are the components in x, y and z directions. The normal stress on this x¢ plane
is obtained as the sum of the projections of the components along the normal, i.e.

sn = 2 2 2
' 1 1 1 2 1 3x x y zn n nσ σ σ σ= + + (3.6a)

Similarly, the shear stress component on this x¢ plane in y¢ direction is obtained as
the sum of the projections of the components in y¢ direction, which has direction
cosines nx2, ny2, nz2. Thus

tx¢y¢ = 1 2 1 1 2 2 1 2 3x x y y z zn n n n n nσ σ σ+ + (3.6b)
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On the same lines, if e1, e2 and e3 are the principal strains, which are also along x,
y, z directions, the normal strain in x¢ direction, from Eq. (2.20), is

ex¢x¢ = 2 2 2
1 1 1 2 1 3x y zn n nε ε ε+ + (3.7a)

The shear strain gx¢y¢ is obtained from Eq. (2.36c) as

gx¢y¢ = ( ) ( ) ( )1 2 1 1 2 2 1 2 3
1 2

1 1 x x y y z z
x y

n n n n n nε ε ε
ε ε′ ′

⎡ + +⎣+ +

1 2 1 2 1 2x x y y z zn n n n n n ⎤+ + + ⎦
Using Eq. (3.5), and observing that ex¢ and ey¢ are small compared to unity in the
denominator,

gx¢y¢ = 1 2 1 1 2 2 1 2 32( )x x y y z zn n n n n nε ε ε+ + (3.7b)

Substituting the values of s1, s2 and s3 from Eqs (3.4a)–(3.4c) into
Eq. (3.6b)

tx¢y¢ = 1 2 1 1 2 2 1 2 3( 2 ) ( 2 ) ( 2 )x x y y z zn n n n n nλ µ ε λ µ ε λ µ ε∆ + + ∆ + + ∆ +

= 1 2 1 2 1 2 1 2 1 1 2 2 1 2 3( ) 2 ( )x x y y z z x x y y z zn n n n n n n n n n n nλ µ ε ε ε∆ + + + + +

Hence, from Eqs (3.5) and (3.7b)
tx¢y¢ = mgx¢y¢ (3.8)

Equation (3.8) relates the rectangular shear stress component tx¢y¢ with the rectan-
gular shear strain component gx¢y¢. Comparing this with the relation used in elemen-
tary strength of materials, one observes that m is the modulus of rigidity, usually
denoted by G.

By taking another axis Oz¢ with direction cosines nx3, ny3 and nz3 and at right
angles to Ox¢ and Oy¢ (so that Ox¢y¢z¢ forms an orthogonal set of axes), one can
get equations similar to (3.6a) and (3.6b) for the other rectangular stress compo-
nents. Thus,

sy¢ = 2 2 2
2 1 2 2 2 3x y zn n nσ σ σ+ + (3.9a)

sz¢ = 2 2 2
3 1 3 2 3 3x y zn n nσ σ σ+ + (3.9b)

ty¢z¢ = 2 3 1 2 3 2 2 3 3x x y y z zn n n n n nσ σ σ+ + (3.9c)

tz¢x¢ = 3 1 1 3 1 2 3 1 3x x y y z zn n n n n nσ σ σ+ + (3.9d)

Similarly, following Eqs (3.7a) and (3.7b) for the other rectangular strain compo-
nents, one gets

ey¢y¢ = 2 2 2
2 1 2 2 2 3x y zn n nε ε ε+ + (3.10a)

ez¢z¢ = 2 2 2
3 1 3 2 3 3x y zn n nε ε ε+ + (3.10b)

gy¢z¢ = 2 3 1 2 3 2 2 3 32( )x x y y z zn n n n n nε ε ε+ + (3.10c)

gz¢x¢ = 3 1 1 3 1 2 3 1 32( )x x y y z zn n n n n nε ε ε+ + (3.10d)

From Eqs (3.6a), (3.4a)–(3.4c) and (3.7a)

sx¢ = 2 2 2
1 1 1 2 1 3x y zn n nσ σ σ+ +
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= ( ) ( )2 2 2 2 2 2
1 1 1 1 1 2 1 3 12x y z x y zn n n n n nλ µ ε ε ε∆ + + + + +

= l D + 2m ex¢x¢ (3.11a)
Similarly, one gets

sy¢ = l D + 2m ey¢y¢ (3.11b)
sz¢ = l D + 2m ez¢z¢ (3.11c)

Similar to Eq. (3.8),
ty¢z¢ = m gy¢z¢ (3.12a)
tx¢z¢ = m gz¢x¢ (3.12b)

Equations (3.11a)–(3.11c), (3.8) and (3.12a) and (3.12b) relate the six rectangular
stress components to six rectangular strain components and in these only two
elastic constants are involved. Therefore, the Hooke’s law for an isotropic mate-
rial will involve two independent elastic constants l and m (or G).

3.5 BULK MODULUS
Adding equations (3.11a)–(3.11c)

( )3 2x y z x x y y z zσ σ σ λ µ ε ε ε′ ′ ′ ′ ′ ′ ′ ′ ′+ + = ∆ + + + (3.13a)

Observing that

1 1 2 3x y z lσ σ σ σ σ σ′ ′ ′+ + = = + + (first invariant of stress),

and

1 1 2 3x x y y z z Jε ε ε ε ε ε′ ′ ′ ′ ′ ′+ + = = + +        (first invariant of strain),

Eq. (3.13a) can be written in several alternative forms as

s1 + s2 + s3 = (3l + 2m)D (3.13b)
sx¢ + sy¢ + sz¢ = (3l + 2m)D (3.13c)

l1 = (3l + 2m)J1 (3.13d)

Noting from Eq. (2.34) that D is the volumetric strain, the definition of bulk
modulus K is

K = pressure
volumetric strain

p=
∆

(3.14a)

If s1 = s2 = s3 = p, then from Eq. (3.13b)

3p = (3l + 2m)D

or 3 p
∆

= (3l + 2m)

and from Eq. (3.14a)

K = 1
3

(3l + 2m) (3.14b)

Thus, the bulk modulus for an isotropic solid is related to Lame’s constants
through Eq. (3.14b).
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3.6 YOUNG’S MODULUS AND POISSON’S RATIO
From Eq. (3.13b), we have

D = 
( )
1 2 3
3 2

σ σ σ
λ µ
+ +
+

Substituting this in Eq. (3.4a)

s1 = ( ) ( )1 2 3 12
3 2

λ σ σ σ µ ε
λ µ

+ + +
+

or e1 = 
( ) ( ) ( )1 2 33 2 2
λ µ λσ σ σ

µ λ µ λ µ
⎡ ⎤+

− +⎢ ⎥+ +⎣ ⎦
(3.15)

From elementary strength of materials

e1 = [ ]1 2 3
1 ( )v
E

σ σ σ− +

where E is Young’s modulus, and n is Poisson’s ratio. Comparing this with
Eq. (3.15),

E = ( )
( ) ( )
3 2

;
2

µ λ µ λν
λ µ λ µ

+
=

+ +
(3.16)

3.7 RELATIONS BETWEEN THE ELASTIC CONSTANTS
In elementary strength of materials, we are familiar with Young’s modulus E,
Poisson’s ratio n, shear modulus or modulus of rigidity G and bulk modulus K.
Among these, only two are independent, and E and n are generally taken as the
independent constants. The other two, namely, G and K, are expressed as

G = ( )2 1
E
ν+

, K = ( )3 1 2
E

ν−
(3.17)

It has been shown in this chapter, that for an isotropic material, the 36 elastic
constants involved in the Generalised Hooke’s law, can be reduced to two inde-
pendent elastic constants. These two elastic constants are Lame’s coefficients
l and m . The second coefficient m is the same as the rigidity modulus G. In terms
of these, the other elastic constants can be expressed as

E = ( )
( )
3 2µ λ µ
λ µ

+
+

, n = ( )2
λ
λ µ+

K = ( )3 2
,3

λ µ+ G ∫ m, l = ( ) ( ) ,
1 1 2

Eν
ν ν+ −

(3.18)

It should be observed from Eq. (3.17) that for the bulk modulus to be positive,
the value of Poisson’s ratio n cannot exceed 1/2. This is the upper limit for n.
For n = 1/2,

3G = E and K = •
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A material having Poisson’s ratio equal to 1/2 is known as an incompressible
material, since the volumetric strain for such an isotropic material is zero.

For easy reference one can collect the equations relating stresses and strains
that have been obtained so far.

(i) In terms of principal stresses and principal strains:
s1 = l D + 2me1
s2 = l D + 2me2 (3.19)
s3 = lD + 2me3

where D = e1 + e2 + e3 = J1.

e1 = 
( ) ( ) ( )1 2 33 2 2
λ µ λσ σ σ

µ λ µ λ µ
⎡ ⎤+

− +⎢ ⎥+ +⎣ ⎦

e2 = 
( ) ( ) ( )2 3 13 2 2
λ µ λσ σ σ

µ λ µ λ µ
⎡ ⎤+

− +⎢ ⎥+ +⎣ ⎦
(3.20)

e3 = 
( ) ( ) ( )3 1 23 2 2
λ µ λσ σ σ

µ λ µ λ µ
⎡ ⎤+

− +⎢ ⎥+ +⎣ ⎦
(ii) In terms of rectangular stress and strain components referred to an orthogo-

nal coordinate system Oxyz:
sx = l D + 2mexx
sy = l D + 2meyy
sz = l D + 2mezz (3.21a)

where D = exx + eyy + ezz = J1.
txy = mgxy, tyz = mgyz, tzx = mgzx (3.21b)

exx = 
( ) ( ) ( )3 2 2x y z
λ µ λσ σ σ

µ λ µ λ µ
⎡ ⎤+

− +⎢ ⎥+ +⎣ ⎦

eyy = 
( ) ( ) ( )
3 2 2y z x
λ µ λσ σ σ

µ λ µ λ µ
⎡ ⎤+

− +⎢ ⎥+ +⎣ ⎦
(3.22a)

ezz = 
( ) ( ) ( )3 2 2z x y
λ µ λσ σ σ

µ λ µ λ µ
⎡ ⎤+

− +⎢ ⎥+ +⎣ ⎦

gxy = 1
µ

 txy, gyz = 1
µ

 tyz, gzx = 1
µ

 tzx (3.22b)

In the preceeding sets of equations, l and m are Lame's constants. In terms
of the more familiar elastic constants E and n, the stress-strain relations are:

(iii) with exx + eyy + ezz = J1 = D,

sx = 
( ) ( )1 1 2 xx

E ν ε
ν ν

⎡ ⎤
∆ +⎢ ⎥+ −⎣ ⎦

= l J1 + 2Gexx
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sy = 
( ) ( )1 1 2 yy

E ν ε
ν ν

⎡ ⎤
∆ +⎢ ⎥+ −⎣ ⎦

 (3.23a)

= l J1 + 2Geyy

sz = 
( ) ( )1 1 2 zz

E ν ε
ν ν

⎡ ⎤
∆ +⎢ ⎥+ −⎣ ⎦

= l J1 + 2Gezz

txy = Ggxy, tyz = Ggyz, txx = Ggzx (3.23b)

exx = ( )1
x y zE

σ ν σ σ⎡ ⎤− +⎣ ⎦

eyy = ( )1
y z xE

σ ν σ σ⎡ ⎤− +⎣ ⎦ (3.24a)

ezz = ( )1
z x yE

σ ν σ σ⎡ ⎤− +⎣ ⎦

gxy = 1
G

 txy, gyz = 1
G

 tyz, gzx = 1
G

 tzx (3.24b)

3.8 DISPLACEMENT EQUATIONS OF EQUILIBRIUM
In Chapter 1, it was shown that if a solid body is in equilibrium, the six rectangular
stress components have to satisfy the three equations of equilibrium. In this
chapter, we have shown how to relate the stress components to the strain
components using the stress-strain relations. Hence, stress equations of equilib-
rium can be converted to strain equations of equilibrium. Further, in Chapter 2, the
strain components were related to the displacement components. Therefore, the strain
equations of equilibrium can be converted to displacement equations of equilib-
rium. In this section, this result will be derived.

The first equation from Eq. (1.65) is

xyx zx
x y z

∂τ∂σ ∂τ
∂ ∂ ∂

+ +  = 0

For an isotropic material

sx = 2 ; ;xx xy xy xz xzλ µ ε τ µ γ τ µ γ∆ + = =

Hence, the above equation becomes

2 xyxx xz
x x y z

∂γ∂ε ∂γ∂λ µ
∂ ∂ ∂ ∂

⎛ ⎞∆ + + +⎜ ⎟
⎝ ⎠

 = 0

From Cauchy’s strain-displacement relations

exx = xu
x

∂
∂

, gxy = yx uu
y x

∂∂
∂ ∂

+ , gzx = x zu u
z x

∂ ∂
∂ ∂

+
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Substituting these

22 2 2 2

2 2 22 yx x x zuu u u u
x x y x zx y z

∂∂ ∂ ∂ ∂∂λ µ
∂ ∂ ∂ ∂ ∂∂ ∂ ∂

⎛ ⎞∆ ⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

 = 0

or  
22 2 2 2 2

2 2 2 2
yx x x x zuu u u u u

x x y x zx y z x

∂∂ ∂ ∂ ∂ ∂∂λ µ µ
∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞∆ ⎜ ⎟+ + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 = 0

or
2 2 2

2 2 2
yx x x x zuu u u u u

x x x y zx y z

∂∂ ∂ ∂ ∂ ∂∂ ∂λ µ µ
∂ ∂ ∂ ∂ ∂∂ ∂ ∂

⎛ ⎞ ⎛ ⎞∆ + + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 = 0

Observing that

D = yx z
xx yy zz

uu u
x y z

∂∂ ∂
ε ε ε

∂ ∂ ∂
+ + = + +

( )
2 2 2

2 2 2 0yx x x xzuu u u uu
x x y z x y z

∂∂ ∂ ∂ ∂∂∂λ µ µ
∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞
+ + + + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

This is one of the displacement equations of equilibrium. Using the notation

—2 = 
2 2 2

2 2 2x y z
∂ ∂ ∂
∂ ∂ ∂

+ +

the displacement equation of equilibrium becomes

( ) 2
xu

x
∂λ µ µ
∂
∆+ + ∇ = 0 (3.25a)

Similarly, from the second and third equations of equilibrium, one gets

( ) 2
yu

y
∂λ µ µ
∂
∆+ + ∇ = 0 (3.25b)

( ) 2
zu

z
∂λ µ µ
∂
∆+ + ∇ = 0

These are known as Lame’s displacement equations of equilibrium. They involve
a synthesis of the analysis of stress, analysis of strain and the relations between
stresses and strains. These equations represent the mechanical, geometrical and
physical characteristics of an elastic solid. Consequently, Lame’s equations play
a very prominent role in the solutions of problems.

Example 3.1 A rubber cube is inserted in a cavity of the same form and size
in a steel block and the top of the cube is pressed by a steel block with a
pressure of p pascals. Considering the steel to be absolutely hard and
assuming that there is no friction between steel and rubber, find (i) the
pressure of rubber against the box walls, and (ii) the extremum shear stresses in
rubber.
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p

l

z

y

x

Fig. 3.1 Example 3.1

Solution
(i) Let l be the dimension of the cube. Since the cube is constrained in x and

 y directions
exx = 0 and eyy = 0

and sz = –p
Therefore

exx = ( )1
x y zE

σ ν σ σ⎡ ⎤− +⎣ ⎦  = 0

eyy = ( )1
y x zE

σ ν σ σ⎡ ⎤− +⎣ ⎦  = 0

Solving

sx = sy = 
1
ν
ν−

 sz = – 
1
ν
ν−

 p

If Poisson’s ratio = 0.5, then
sx = sy = sz = –p

(ii) The extremum shear stresses are

t2 = 1 3 2 31 2
3 1, ,

2 2 2
σ σ σ σσ σ

τ τ
− −−

= =

If n £ 0.5, then sx and sy are numerically less than or equal to sz. Since sx,
sy and sz are all compressive

s1 = sx = –
1
ν
ν−

p

s2 = sy = –
1
ν
ν−

p

s3 = sz = –p

\ t1 = p ( ) 2 3
1 2 1 21 , , 0

1 1 1
p pν νν τ τ

ν ν ν
− −

− = = =
− − −

If n = 0.5, the shear stresses are zero.

Example 3.2 A cubical element is subjected to the following state of stress.

sx = 100 MPa, sy = –20 MPa, sz = – 40 Mpa, txy = tyz = tzx = 0
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Assuming the material to be homogeneous and isotropic, determine the prin-
cipal shear strains and the octahedral shear strain, if E = 2 ¥ 105 MPa and
n = 0.25.

Solution Since the shear stresses on x, y and z planes are zero, the given stresses are
principal stresses. Arranging such that s1 >_ s2 >_ s3

s 1 = 100 MPa, s2 = –20 MPa, s3 = – 40 MPa
The extremal shear stresses are

t1 = 1
2

(s2 – s3) = 1
2

(–20 + 40) = 10 Mpa

t2 = 1
2

(s3 – s1) = 1
2

(–40 – 100) = –70 Mpa

t3 = 1
2

(s1 – s2) = 1
2

(100 + 20) = 60 Mpa

The modulus of rigidity G is

G = 
( )

52 10
2 1.252 1

E
ν

×
=

×+
 = 8 ¥ 104 MPa

The principal shear strains are therefore

g1 = 1
4

10
8 10G

τ
=

×
 = 1.25 ¥ 10–4

g2 = 42
4

70 8.75 10
8 10G

τ −= − = − ×
×

g3 = 3
4

60
8 10G

τ
=

×
 = 7.5 ¥ 10–4

From Eq. (1.44a), the octahedral shear stress is

t0 = 1
3

[(s1 – s2)
2 + (s2 – s3)

2 + (s3 – s1)
2]1/2

= 1
3

[1202 + 202 + 1402]1/2 = 61.8 MPa

The octahedral shear strain is therefore

g0 = 0
4

61.8
8 10G

τ
=

×
 = 7.73 ¥ 10–4

3.1 Compute Lame’s coefficients l and m for
(a) steel having E = 207 ¥ 106 kPa (2.1 ¥ 106 kgf/cm2) and n = 0.3.
(b) concrete having E = 28 ¥ 106 kPa (2.85 ¥ 105 kgf/cm2) and n = 0.2.
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⎡
⎢
⎢
⎢
⎣

Ans. (a) 120 ¥ 106 kPa (1.22 ¥ 106 kgf/cm2), 80 ¥ 106 kPa  ⎡
⎢
⎢
⎢
⎣

(8.1680 ¥ 105 kgf/cm2)
(b) 7.8 ¥106 kPa (7.96 ¥ 104 kgf/cm2), 11.7 ¥ 106 kPa

(1.2 ¥ 105 kgf/cm2)
3.2 For steel, the following data is applicable:

E = 207 ¥ 106 kPa (2.1 ¥ 106 kgf/cm2),
and G = 80 ¥ 106 kPa (0.82 ¥ 106 kgf/cm2)
For the given strain matrix at a point, determine the stress matrix.

[eij] = 
0.001 0 0.002

0 0.003 0.0003
0.002 0.003 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡
⎢
⎢
⎢
⎣

Ans. [tij] = 

68.4 0 160
0 708.4 24

160 24 228.4

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 ¥ 103 kPa

⎡
⎢
⎢
⎢
⎣

3.3 A thin rubber sheet is enclosed between two fixed hard steel plates (see
Fig. 3.2). Friction between the rubber and steel faces is negligible. If
the rubber plate is subjected to stresses sx and sy as shown, determine the
strains exx and eyy, and also the stress ezz

Ans. sz = +n (sx + sy)

exx = +
1

E
ν+

 [(1 – n)sx – nsy]

eyy = +
1

E
ν+

 [(1 – n)sy nsx]

Fig. 3.2 Example 3.2

z

sy
y

sxx

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦



4.1 INTRODUCTION
It is known from the results of material testing that when bars of ductile materials
are subjected to uniform tension, the stress-strain curves show a linear range within
which the materials behave in an elastic manner and a definite yield zone where the
materials undergo permanent deformation. In the case of the so-called brittle mate-
rials, there is no yield zone. However, a brittle material, under suitable conditions,
can be brought to a plastic state before fracture occurs. In general, the results of
material testing reveal that the behaviour of various materials under similar test
conditions, e.g. under simple tension, compression or torsion, varies considerably.

In the process of designing a machine element or a structural member, the
designer has to take precautions to see that the member under consideration does
not fail under service conditions. The word ‘failure’ used in this context may mean
either fracture or permanent deformation beyond the operational range due to the
yielding of the member. In Chapter 1, it was stated that the state of stress at any
point can be characterised by the six rectangular stress components—three nor-
mal stresses and three shear stresses. Similarly, in Chapter 2, it was shown that
the state of strain at a point can be characterised by the six rectangular strain
components. When failure occurs, the question that arises is: what causes the
failure? Is it a particular state of stress, or a particular state of strain or some other
quantity associated with stress and strain? Further, the cause of failure of a
ductile material need not be the same as that for a brittle material.

Consider, for example, a uniform rod made of a ductile material subject to tension.
When yielding occurs,

(i) The principal stress s at a point will have reached a definite value, usually
denoted by sy;

(ii) The maximum shearing stress at the point will have reached a value equal

to t  = 1
2

s y;

(iii) The principal extension will have become e = sy /E;
(iv) The octahedral shearing stress will have attained a value equal to

( 2 /3) sy;
and so on.

Theories of Failure
or Yield Criteria and
Introduction to Ideally
Plastic Solid 4

CHAPTER
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Any one of the above or some other factors might have caused the yielding.
Further, as pointed out earlier, the factor that causes a ductile material to yield
might be quite different from the factor that causes fracture in a brittle material
under the same loading conditions. Consequently, there will be many criteria or
theories of failure. It is necessary to remember that failure may mean fracture or
yielding. Whatever may be the theory adopted, the information regarding it will
have to be obtained from a simple test, like that of a uniaxial tension or a pure
torsion test. This is so because the state of stress or strain which causes the
failure of the material concerned can easily be calculated. The critical value
obtained from this test will have to be applied for the stress or strain at a point in
a general machine or a structural member so as not to initiate failure at that point.

There are six main theories of failure and these are discussed in the next sec-
tion. Another theory, called Mohr’s theory, is slightly different in its approach
and will be discussed separately.

4.2 THEORIES OF FAILURE

Maximum Principal Stress Theory

This theory is generally associated with the name of Rankine. According to this
theory, the maximum principal stress in the material determines failure regardless
of what the other two principal stresses are, so long as they are algebraically
smaller. This theory is not much supported by experimental results. Most solid
materials can withstand very high hydrostatic pressures without fracture or with-
out much permanent deformation if the pressure acts uniformly from all sides as is
the case when a solid material is subjected to high fluid pressure. Materials with
a loose or porous structure such as wood, however, undergo considerable perma-
nent deformation when subjected to high hydrostatic pressures.On the other hand,
metals and other crystalline solids (including consolidated natural rocks) which
are impervious, are elastically compressed and can withstand very high hydro-
static pressures. In less compact solid materials, a marked evidence of failure has
been observed when these solids are subjected to hydrostatic pressures. Further,
it has been observed that even brittle materials, like glass bulbs, which are subject
to high hydrostatic pressure do not fail when the pressure is acting, but fail either
during the period the pressure is being reduced or later when the pressure is
rapidly released. It is stated that the liquid could have penentrated through the
fine invisible surface cracks and when the pressure was released, the entrapped
liquid may not have been able to escape fast enough. Consequently, high pres-
sure gradients are caused on the surface of the material which tend to burst or
explode the glass. As Karman pointed out, this penentration and the consequent
failure of the material can be prevented if the latter is covered by a thin flexible
metal foil and then subjected to high hydrostatic pressures. Further noteworthy
observations on the bursting action of a liquid which is used to transmit pressure
were made by Bridgman who found that cylinders of hardened chrome-nickel steel
were not able to withstand an internal pressure well if the liquid transmitting the
pressure was mercury instead of viscous oil. It appears that small atoms of mer-
cury are able to penentrate the cracks, whereas the large molecules of oil are not
able to penentrate so easily.
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From these observations, we draw the conclusion that a pure state of hydro-
static pressure [s1 = s2 = s3 = –p ( p > 0)] cannot produce permanent deformation
in compact crystalline or amorphous solid materials but produces only a small
elastic contraction, provided the liquid is prevented from entering the fine surface
cracks or crevices of the solid. This contradicts the maximum principal stress
theory. Further evidence to show that the maximum principal stress theory cannot
be a good criterion for failure can be demonstrated in the following manner:

Consider the block shown in Fig. 4.1, subjected to stress s1 and s2, where s1 is
tensile and s2 is compressive.

If s1 is equal to s2 in magnitude, then on a 45° plane, from Eq. (1.63b), the
shearing stress will have a magnitude equal to s1. Such a state of stress occurs in
a cylindrical bar subjected to pure torsion. If the maximum principal stress theory
was valid, s1 would have been the limiting value. However, for ductile materials
subjected to pure torsion, experiments reveal that the shear stress limit causing
yield is much less than s1 in magnitude.

Notwithstanding all these, the maximum principal stress theory, because of its
simplicity, is considered to be reasonably satisfactory for brittle materials which
do not fail by yielding. Using information from a uniaxial tension (or compression)
test, we say that failure occurs when the maximum principal stress at any point
reaches a value equal to the tensile (or compressive) elastic limit or yield strength
of the material obtained from the uniaxial test. Thus, if s1 > s2 > s3 are the
principal stresses at a point and sy the yield stress or tensile elastic limit for the
material under a uniaxial test, then failure occurs when

s1 ≥ sy (4.1)

Maximum Shearing Stress Theory

Observations made in the course of extrusion tests on the flow of soft metals
through orifices lend support to the assumption that the plastic state in such
metals is created when the maximum shearing stress just reaches the value of the
resistance of the metal against shear. Assuming s1 > s2 > s3, yielding, according
to this theory, occurs when the maximum shearing stress

1 3
max 2

σ σ
τ

−
=

s1

s2

t
t

t

s2

45°

s1

Fig. 4.1   Rectangular element with 45° plane
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reaches a critical value. The maximum shearing stress theory is accepted to be
fairly well justified for ductile materials. In a bar subject to uniaxial tension or
compression, the maximum shear stress occurs on a plane at 45° to the load axis.
Tension tests conducted on mild steel bars show that at the time of yielding, the
so-called slip lines occur approximately at 45°, thus supporting the theory. On the
other hand, for brittle crystalline materials which cannot be brought into the plas-
tic state under tension but which may yield a little before fracture under compres-
sion, the angle of the slip planes or of the shear fracture surfaces, which usually
develop along these planes, differs considerably from the planes of maximum
shear. Further, in these brittle materials, the values of the maximum shear in ten-
sion and compression are not equal. Failure of material under triaxial tension (of
equal magnitude) also does not support this theory, since equal triaxial tensions
cannot produce any shear.

However, as remarked earlier, for ductile load carrying members where large
shears occur and which are subject to unequal triaxial tensions, the maximum
shearing stress theory is used because of its simplicity.

If s1 > s2 > s3 are the three principal stresses at a point, failure occurs when

 1 3
max 2 2

yσσ σ
τ

−
= ≥ (4.2)

where sy /2 is the shear stress at yield point in a uniaxial test.

Maximum Elastic Strain Theory

According to this theory, failure occurs at a point in a body when the maximum
strain at that point exceeds the value of the maximum strain in a uniaxial test of the
material at yield point. Thus, if s1, s2 and s3 are the principal stresses at a point,
failure occurs when

( )1 1 2 3
1 y

E E
σ

ε σ ν σ σ⎡ ⎤= − + ≥⎣ ⎦ (4.3)

We have observed that a material subjected
to triaxial compression does not suffer failure,
thus contradicting this theory. Also, in a block
subjected to a biaxial tension, as shown in
Fig. 4.2, the principal strain e1 is

( )1 1 2
1
Eε σ νσ= −

and is smaller than s1/E because of s2.
Therefore, according to this theory, s1 can
be increased more than sy without causing
failure, whereas, if s2 were compressive, the
magnitude of s1 to cause failure would be
less than sy. However, this is not supported
by experiments.

While the maximum strain theory is an improvement over the maximum stress
theory, it is not a good theory for ductile materials. For materials which fail by

s1

s2s2

s1

Fig. 4.2 Biaxial state of stress
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brittle fracture, one may prefer the maximum strain theory to the maximum
stress theory.

Octahedral Shearing Stress Theory

According to this theory, the critical quantity is the shearing stress on the octa-
hedral plane. The plane which is equally inclined to all the three principal axes Ox,
Oy and Oz is called the octahedral plane. The normal to this plane has direction
cosines nx, ny and nz = 1/ 3 . The tangential stress on this plane is the octahedral
shearing stress. If s1, s2 and s3 are the principal stresses at a point, then from
Eqs (1.44a) and (1.44c)

toct ( ) ( ) ( )
1/ 22 22

1 2 2 3 3 1
1
3 σ σ σ σ σ σ⎡ ⎤= − + − + −⎣ ⎦

( )1/ 22
1 2

2 3
3

l l= −

In a uniaxial test, at yield point, the octahedral stress ( 2 /3)  sy = 0.47sy. Hence,
according to the present theory, failure occurs at a point where the values of
principal stresses are such that

( ) ( ) ( )
1/22 22

oct 1 2 2 3 3 1
1 2
3 3 yτ σ σ σ σ σ σ σ⎡ ⎤= − + − + − ≥
⎣ ⎦

(4.4a)

or ( )2 2
1 23 yl l σ− ≥ (4.4b)

This theory is supported quite well by experimental evidences. Further, when a mate-
rial is subjected to hydrostatic pressure, s1 = s2 = s3 = –p, and toct is equal to zero.
Consequently, according to this theory, failure cannot occur and this, as stated
earlier, is supported by experimental results. This theory is equivalent to the maxi-
mum distortion energy theory, which will be discussed subsequently.

Maximum Elastic Energy Theory

This theory is associated with the names of Beltrami and Haigh. According to
this theory, failure at any point in a body subject to a state of stress begins
only when the energy per unit volume absorbed at the point is equal to the
energy absorbed per unit volume by the material when subjected to the elastic
limit under a uniaxial state of stress. To calculate the energy absorbed per unit
volume we proceed as follows:

Let s1, s2 and s3 be the principal stresses and let their magnitudes increase
uniformly from zero to their final magnitudes. If e1, e2 and e3 are the corresponding
principal strains, then the work done by the forces, from Fig. 4.3(b), is

( ) ( ) ( )1 2 3
1 1 1
2 2 2

W y z x x z y x y zσ δ σ δ σ δ∆ = ∆ ∆ ∆ + ∆ ∆ ∆ + ∆ ∆ ∆

where dD x, dDy and dDz are extensions in x, y and z directions respectively.
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s2

s1s1

s3

s3

s2

s

eO

Dx

Dy Dz

Work Done =
Area Under Triangle

(b)

Fig. 4.3 (a) Principal stresses on a rectangular block
(b) Area representing work done

From Hooke’ s law

( )1 1 2 3
1x x x
E

δ ε σ ν σ σ⎡ ⎤∆ = ∆ = − + ∆⎣ ⎦

( )2 2 1 3
1y y y
E

δ ε σ ν σ σ⎡ ⎤∆ = ∆ = − + ∆⎣ ⎦

( )3 3 1 2
1z z z
E

δ ε σ ν σ σ∆ = ∆ = − + ∆⎡ ⎤⎣ ⎦

Substituting these

( )2 2 2
1 2 3 1 2 2 3 3 1

1 2
2

W x y z
E

σ σ σ ν σ σ σ σ σ σ⎡ ⎤∆ = + + − + + ∆ ∆ ∆⎣ ⎦

The above work is stored as internal energy if the rate of deformation is small.
Consequently, the energy U per unit volume is

( )2 2 2
1 2 3 1 2 2 3 3 1

1 2
2E

σ σ σ ν σ σ σ σ σ σ⎡ ⎤+ + − + +⎣ ⎦ (4.5)

In a uniaxial test, the energy stored per unit volume at yield point or elastic limit

is 21/2 yE σ . Hence, failure occurs when

( )2 2 2 2
1 2 3 1 2 2 3 3 12 yσ σ σ ν σ σ σ σ σ σ σ+ + − + + ≥ (4.6)

This theory does not have much significance since it is possible for a material to
absorb considerable amount of energy without failure or permanent deformation
when it is subjected to hydrostatic pressure.

Energy of Distortion Theory

This theory is based on the work of Huber, von Mises and Hencky. According to
this theory, it is not the total energy which is the criterion for failure; in fact the

(a)
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energy absorbed during the distortion of an element is responsible for failure.
The energy of distortion can be obtained by subtracting the energy of volumetric
expansion from the total energy. It was shown in the Analysis of Stress (Sec. 1.22)
that any given state of stress can be uniquely resolved into an isotropic state and
a pure shear (or deviatoric) state. If s1, s2 and s3 are the principal stresses at a
point then

1 1

2 2

3 3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

p p
p p

P p

σ σ
σ σ

σ σ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

(4.7)

where p = 1
3

(s1 + s2 + s3).

The first matrix on the right-hand side represents the isotropic state and the
second matrix the pure shear state. Also, recall that the necessary and sufficient
condition for a state to be a pure shear state is that its first invariant must be
equal to zero. Similarly, in the Analysis of Strain (Section 2.17), it was shown that
any given state of strain can be resolved uniquely into an isotropic and a deviatoric
state of strain. If e1, e2 and e3 are the principal strains at the point, we have

1 1

2 2

3 3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

e e
e e

e e

ε ε
ε ε

ε ε

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

(4.8)

where e = 1
3

(e1 + e2 + e3).

It was also shown that the volumetric strain corresponding to the deviatoric
state of strain is zero since its first invariant is zero.

It is easy to see from Eqs (4.7) and (4.8) that, by Hooke’s law, the isotropic
state of strain is related to the isotropic state of stress because

  ( )1 1 2 3
1
E

ε σ ν σ σ⎡ ⎤= − +⎣ ⎦

  ( )2 2 3 1
1
E

ε σ ν σ σ⎡ ⎤= − +⎣ ⎦

  ( )3 3 2 1
1
E

ε σ ν σ σ= − +⎡ ⎤⎣ ⎦

Adding and taking the mean

( )1 2 3
1
3

ε ε ε+ + = e

    ( ) ( )1 2 3 1 2 3
1 2

3E
σ σ σ ν σ σ σ⎡ ⎤= + + − + +⎣ ⎦

or e = ( )1 1 2 p
E

ν−⎡ ⎤⎣ ⎦ (4.9)
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i.e. e is connected to p by Hooke’s law. This states that the volumetric strain
3e is proportional to the pressure p, the proportionality constant being equal to
3
E

 (1 – 2n) = K, the bulk modulus, Eq. (3.14).

Consequently, the work done or the energy stored during volumetric change is

U ¢ = 1 1 1 3
2 2 2 2

pe pe pe pe+ + =

Substituting for e from Eq. (4.9)

U ¢ = ( ) 23 1 2
2

p
E

ν−
(4.10)

  ( )21 2 3
1 2

6E
ν σ σ σ−

= + +

The total elastic strain energy density is given by Eq. (4.5). Hence, subtracting U’
from U

U * = ( ) ( )2 2 2
1 2 3 1 2 2 3 3 1

1
2E E

νσ σ σ σ σ σ σ σ σ+ + − + +

( )21 2 3
1 2

6E
ν σ σ σ−− + + (4.11a)

  ( ) ( )2 2 2
1 2 3 1 2 2 3 3 1

2 1
6E

ν
σ σ σ σ σ σ σ σ σ

+
= + + − − − (4.11b)

  ( ) ( ) ( ) ( )2 22
1 2 2 3 3 1

1
6E
ν

σ σ σ σ σ σ
+ ⎡ ⎤= − + − + −⎣ ⎦

(4.11c)

Substituting G = 
2(1 )

E
ν+

 for the shear modulus,

U * = ( )2 2 2
1 2 3 1 2 2 3 3 1

1
6G

σ σ σ σ σ σ σ σ σ+ + − − − (4.12a)

or U * = ( ) ( ) ( )2 22
1 2 2 3 3 1

1
12G

σ σ σ σ σ σ⎡ ⎤− + − + −⎣ ⎦
(4.12b)

This is the expression for the energy of distortion. In a uniaxial test, the energy of

distortion is equal to 21
6 yG

σ . This is obtained by simply putting s1 = sy and

s2 = s3 = 0 in Eq. (4.12). This is also equal to 2(1 )
3 yE
ν σ+  from Eq. (4.11c).

Hence, according to the distortion energy theory, failure occurs at that point
where s1,s2 and s3 are such that

( ) ( ) ( )2 22 2
1 2 2 3 3 1 2 yσ σ σ σ σ σ σ− + − + − ≥ (4.13)

But we notice that the expression for the octahedral shearing stress from
Eq. (1.22) is

( ) ( ) ( )
1/ 22 22

oct 1 2 2 3 3 1
1
3τ σ σ σ σ σ σ⎡ ⎤= − + − + −⎣ ⎦
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Hence, the distortion energy theory states that failure occurs when
2
oct9τ = 22 yσ≥

or toct = 2
3 yσ≥ (4.14)

This is identical to Eq. (4.4). Therefore, the octahedral shearing stress theory and
the distortion energy theory are identical. Experiments made on the flow of ductile
metals under biaxial states of stress have shown that Eq. (4.14) or equivalently,
Eq. (4.13) expresses well the condition under which the ductile metals at normal
temperatures start to yield. Further, as remarked earlier, the purely elastic deforma-
tion of a body under hydrostatic pressure (toct = 0) is also supported by this theory.

4.3 SIGNIFICANCE OF THE THEORIES OF FAILURE
The mode of failure of a member and the factor that is responsible for failure
depend on a large number of factors such as the nature and properties of the
material, type of loading, shape and temperature of the member, etc. We have
observed, for example, that the mode of failure of a ductile material differs from
that of a brittle material. While yielding or permanent deformation is the character-
istic feature of ductile materials, fracture without permanent deformation is the
characteristic feature of brittle materials. Further, if the loading conditions are
suitably altered, a brittle material may be made to yield before failure. Even ductile
materials fail in a different manner when subjected to repeated loadings (such as
fatigue) than when subjected to static loadings. All these factors indicate that any
rational procedure of design of a member requires the determination of the mode
of failure (either yielding or fracture), and the factor (such as stress, strain and
energy) associated with it. If tests could be performed on the actual member,
subjecting it to all the possible conditions of loading that the member would be
subjected to during operation, then one could determine the maximum loading
condition that does not cause failure. But this may not be possible except in very
simple cases. Consequently, in complex loading conditions, one has to identify
the factor associated with the failure of a member and take precautions to see that
this factor does not exceed the maximum allowable value. This information is
obtained by performing a suitable test (uniform tension or torsion) on the material
in the laboratory.

In discussing the various theories of failure, we have expressed the critical
value associated with each theory in terms of the yield point stress sy obtained
from a uniaxial tensile stress. This was done since it is easy to perform a uniaxial
tensile stress and obtain the yield point stress value. It is equally easy to perform
a pure torsion test on a round specimen and obtain the value of the maximum
shear stress ty at the point of yielding. Consequently, one can also express the
critical value associated with each theory of failure in terms of the yield point
shear stress ty. In a sense, using sy or ty is equivalent because during a uniaxial
tension, the maximum shear stress t at a point is equal to 1

2
s; and in the case of

pure shear, the normal stresses on a 45° element are s and –s, where s is numeri-
cally equivalent to t. These are shown in Fig. 4.4.
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If one uses the yield point shear stress ty obtained from a pure torsion test,
then the critical value associated with each theory of failure is as follows:

(i) Maximum Normal Stress Theory According to this theory, failure occurs when
the normal stress s at any point in the stressed member reaches a value

s ≥ ty
This is because, in a pure torsion test when yielding occurs, the maximum

normal stress s is numerically equivalent to ty.

(ii) Maximum Shear Stress Theory According to this theory, failure occurs when
the shear stress t at a point in the member reaches a value

t ≥ ty

(iii) Maximum Strain Theory According to this theory, failure occurs when the
maximum strain at any point in the member reaches a value

1 2 3
1 [ ( )]
E

ε σ ν σ σ= − +

From Fig. 4.4, in the case of pure shear
s1 = s = t, s2 = 0, s3 = –s = –t

Hence, failure occurs when the strain e at any point in the member reaches a
value

1 1( ) (1 )y y yE E
ε τ ντ ν τ= + = +

(iv) Octahedral Shear Stress Theory When an element is subjected to pure shear,
the maximum and minimum normal stresses at a point are s and –s (each numeri-
cally equal to the shear stress t ), as shown in Fig. 4.4. Corresponding to this,
from Eq. (1.44a), the octahedral shear stress is

toct = 
1/ 22 2 2

1 2 2 3 3 1
1 ( ) ( ) ( )
3

σ σ σ σ σ σ⎡ ⎤− + − + −⎣ ⎦
Observing that s1 = s = t, s2 = 0, s3 = –s = –t

toct = 2 2 2 1/ 21 ( 4 )
3
σ σ σ+ +

6 2
3 3

σ τ= =

sy t sy

ty

ty

s

s

t = sy /2 s = ty

Fig. 4.4 Uniaxial and pure shear state of stress
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So, failure occurs when the octahedral shear stress at any point is

toct = 2
3 yτ

(v) Maximum Elastic Energy Theory The elastic energy per unit volume stored
at a point in a stressed body is, from Eq. (4.5),

( )2 2 2
1 2 3 1 2 2 3 3 1

1 2U
E

σ σ σ ν σ σ σ σ σ σ⎡ ⎤= + + − + +⎣ ⎦

In the case of pure shear, from Fig. 4.4,

1 2 3, 0,σ τ σ σ τ= = = −

Hence, U = ( )2 2 21 2
2E

τ τ ν τ⎡ ⎤+ − −⎣ ⎦

   ( ) 21 1
E

ν τ= +

So, failure occurs when the elastic energy density at any point in a stressed
body is such that

( ) 21 1 yU
E

ν τ= +

(vi) Distortion Energy Theory The distortion energy density at a point in a
stressed body is, from Eq. (4.12),

* 2 2 2
1 2 2 3 3 1

1 ( ) ( ) ( )
12

U
G

σ σ σ σ σ σ⎡ ⎤= − + − + −⎣ ⎦

Once again, by observing that in the case of pure shear

1 2 3, 0,σ τ σ σ τ= = = −

U * = 2 2 21 4
12G

τ τ τ⎡ ⎤+ +⎣ ⎦

  21
2G

τ=

So, failure occurs when the distortion energy density at any point is
equal to

* 21
2 yU
G
τ= = ( ) 22 11

2 yE
ν

τ
+

⋅

 ( ) 21
yE

ν
τ

+
=

The foregoing results show that one can express the critical value associated
with each theory of failure either in terms of sy or in terms of ty. Assuming that a
particular theory of failure is correct for a given material, then the values of sy and
ty obtained from tests conducted on the material should be related by the corre-
sponding expressions. For example, if the distortion energy is a valid theory for a

Chapter_04.pmd 7/3/2008, 5:42 AM119



120 Advanced Mechanics of Solids

material, then the value of the energy in terms of sy and that in terms of ty should
be equal. Thus,

U * = ( ) ( )2 21 1
3y yE E

ν ν
τ σ

+ +
=

or ty = 1 0.577
3 y yσ σ=

This means that the value of t y obtained from pure torsion test should be equal to
0.577 times the value of sy obtained from a uniaxial tension test conducted on the
same material.

Table 4.1 summarizes these theories and the corresponding expressions. The
first column lists the six theories of failure. The second column lists the critical
value associated with each theory in terms of sy, the yield point stress in uniaxial
tension test. For example, according to the octahedral shear stress theory, failure
occurs when the octahedral shear stress at a point assumes a value equal to

2 /3 yσ . The third column lists the critical value associated with each theory in
terms of ty, the yield point shear stress value in pure torsion. For example, accord-
ing to octahedral shear stress theory, failure occurs at a point when the octahe-
dral shear stress equals a value 2/3 yτ . The fourth column gives the relationship
that should exist betweenty and sy in each case if each theory is valid. Assuming
octahedral shear stress theory is correct, then the value of ty obtained from pure
torsion test should be equal to 0.577 times the yield point stress sy obtained from
a uniaxial tension test.

Tests conducted on many ductile materials reveal that the values of ty lie
between 0.50 and 0.60 of the tensile yield strength sy, the average value being
about 0.57. This result agrees well with the octahedral shear stress theory and the

Table 4.1

Failure theory Tension Shear Relationship

Max. normal stress sy sy = ty ty = sy

Max. shear stress 1
2 yτ σ= ty 0.5y yτ σ=

Max. strain 1
4

ν⎛ ⎞=⎜ ⎟
⎝ ⎠

1
yE

ε σ=
5
4

y

E
τ

ε = 0.8y yτ σ=

Octahedral shear oct
2

3 yτ σ= oct
2
3 yτ τ= 0.577y yτ σ=

Max. energy 1
4

ν⎛ ⎞=⎜ ⎟
⎝ ⎠

, 21
2 yU

E
σ= 25 1

4 yU
E
τ= 0.632y yτ σ=

Distortion energy
2

* 1
3

yU
E
σν+

= ( )
2

* 1 yU
E
τ

ν= + 0.577y yτ σ=
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distortion energy theory. The maximum shear stress theory predicts that shear
yield value ty is 0.5 times the tensile yield value. This is about 15% less than the
value predicted by the distortion energy (or the octahedral shear) theory. The
maximum shear stress theory gives values for design on the safe side. Also,
because of its simplicity, this theory is widely used in machine design dealing
with ductile materials.

4.4 USE OF FACTOR OF SAFETY IN DESIGN
In designing a member to carry a given load without failure, usually a factor of
safety N is used. The purpose is to design the member in such a way that it can
carry N times the actual working load without failure. It has been observed that
one can associate different factors for failure according to the particular theory of
failure adopted. Consequently, one can use a factor appropriately reduced during
the design process. Let X be a factor associated with failure and let F be the load.
If X is directly proportional to F, then designing the member to safely carry a load
equal to NF is equivalent to designing the member for a critical factor equal to
X/N. However, if X is not directly proportional to F, but is, say, proportional to
F 2, then designing the member to safely carry a load to equal to NF is equivalent
to limiting the critical factor to /X N . Hence, in using the factor of safety, care
must be taken to see that the critical factor associated with failure is not reduced
by N, but rather the load-carrying capacity is increased by N. This point will be
made clear in the following example.

Example 4.1 Determine the diameter d of a circular shaft subjected to a bending
moment M and a torque T, according to the several theories of failure. Use a factor of
safety N.

Solution Consider a point P on the periphery of the shaft. If d is the diameter,
then owing to the bending moment M, the normal stress s at P on a plane normal
to the axis of the shaft is, from elementary strength of materials,

My
Iσ = = 4

64
2
dM

dπ
(4.15)

3
32M

dπ
=

The shearing stress on a transverse plane at P due to torsion T is

2 P

Td
I

τ = = 4
32

2
Td

dπ
⋅ (4.16)

3
16T

dπ
=

Therefore, the principal stresses at P are

( )2 2
1,3 2

1 1 4 , 0
2 2

σ σ σ τ σ= ± + = (4.17)
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(i) Maximum Normal Stress Theory At point P, the maximum normal stress
should not exceed sy, the yield point stress in tension. With a factor of safety N,
when the load is increased N times, the normal and shearing stresses are Ns and
Nt. Equating the maximum normal stress to sy,

( )1/ 22 2
max 1

1 4
2 2

N σσ σ σ τ⎡ ⎤= = + +⎢ ⎥⎣ ⎦
= sy

or ( )1/22 24σ σ τ+ + = 
2 y

N
σ

i.e., ( )1/ 22 2
3 3

32 1 32M M T
d dπ π

+ × + = 
2 y

N
σ

i.e., ( )1/ 22 216 16M M T+ + = 
3

yd
N

π σ

From this, the value of d can be determined with the known values of M, T and sy.

(ii) Maximum Shear Stress Theory At point P, the maximum shearing stress
from Eq. (4.17) is

tmax = ( ) ( )1/ 22 2
1 3

1 1 4
2 2

σ σ σ τ− = +

When the load is increased N times, the shear stress becomes Nt.
Hence,

( )1/ 22 2
max

1 4
2

N Nτ σ τ= + = 
2
yσ

or, ( )1/22 24σ τ+ = y

N
σ

Substituting for s and t

( )1/ 22 2
3

32 M T
dπ

+ = y

N
σ

or, ( )1/ 22 232 M T+ = 
3

yd
N

π σ

(iii) Maximum Strain Theory The maximum elastic strain at point P with a fac-
tor of safety N is

( )max 1 2 3
N
E

ε σ ν σ σ⎡ ⎤= − +⎣ ⎦

From Eq. (4.3)

( )1 2 3
y

N
σ

σ ν σ σ− + =

Since s2 = 0, we have 1 3
y

N
σ

σ ν σ− =
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or ( ) ( )1/ 2 1/ 22 2 2 21 4 4
2 2 2 2

y

N
σσ σ νσ τ ν σ τ+ + − + + =

Substituting for s and t

( ) ( ) ( )1/ 22 2
3 3

16 161 1 yM M T
Nd d

σ
ν ν

π π
− + + + =

or ( ) ( ) ( )
3

1/ 22 21 16 1 16 yd
M M T

N
π σ

ν ν− + + + =

(iv) Octahedral Shear Stress Theory The octahedral shearing stress at point P
from Eq. (4.4a), and using a factor of safety N, is

Ntoct
1/ 22 2 2

1 2 2 3 3 1( ) ( ) ( )
3
N σ σ σ σ σ σ⎡ ⎤= − + − + −⎣ ⎦ = 2

3 yσ

or
1/ 22 2 2

1 2 2 3 3 1( ) ( ) ( )σ σ σ σ σ σ⎡ ⎤− + − + −⎣ ⎦ = 2
yN σ

With s2 = 0
1/ 22 2

1 3 1 32 2 2σ σ σ σ⎡ ⎤+ −⎣ ⎦ = 2
yN σ

or
1/ 22 2

1 3 1 3σ σ σ σ⎡ ⎤+ −⎣ ⎦ = y

N
σ

Substituting for s1 and s3

( ) ( ) ( )1/ 22 2 2 2 2 2 2 21 1 1 1 14 4 4
4 4 2 4 4
σ σ τ σ σ τ σ σ τ⎡ + + + + + + +⎢⎣

( ) ( )
1/ 21/ 22 2 2 2 21 1 14 4

2 4 4
y

N
σ

σ σ τ σ σ τ ⎤− + − + + =⎥⎦

or ( )1/ 22 23σ τ+ = y

N
σ

Substituting for s and t

( )1/ 22 2
3

16 4 3M T
dπ

+ = y

N
σ

or 2 2 1/ 216 (4 3 )M T+ = 
3

yd
N

π σ

(v) Maximum Energy Theory The maximum elastic energy at P from
Eq. (4.6) and with a factor of safety N is

( )
22

2 2 2
1 2 3 1 2 2 3 3 12

2 2
yNU

E E
σ

σ σ σ ν σ σ σ σ σ σ⎡ ⎤= + + − + + =⎣ ⎦
Note: Since the stresses for design are Ns1, Ns2 and Ns3, the factor N 2

appears in the expression for U. In the previous four cases, only N
appeared because of the particular form of the expression.

Chapter_04.pmd 7/3/2008, 5:42 AM123



124 Advanced Mechanics of Solids

With s2 = 0,
2

2 2
1 3 1 3 2( 2 ) y

N

σ
σ σ ν σ σ+ − =

Substituting for s1 and s3

( ) ( )1/ 22 2 2 2 2 21 1 1 14 4
4 4 2 4
σ σ τ σ σ τ σ⎡ + + + + +⎢⎣

( ) ( )
2

1/ 22 2 2 2 2
2

1 14 4 2
4 2

y

N

σ
σ τ σ σ τ ντ ⎤+ + − + + =⎥⎦

or ( )2 22 2σ ν τ+ + = 
2

2
y

N

σ

i.e. ( )
1/ 22 22 2σ ν τ⎡ ⎤+ +⎣ ⎦ = y

N
σ

i.e. ( )
1/ 22 2

3
16 4 2 2M T
d

ν
π

⎡ ⎤+ +⎣ ⎦ = y

N
σ

or ( )
1/ 22 24 2 1M Tν⎡ ⎤+ +⎣ ⎦ = 

3

16
yd

N
π σ

(vi) Maximum Distortion Energy Theory The distortion energy associated with
Ns1, Ns2 and Ns3 at P is given by Eq. (4.11c). Equating this to distortion energy in
terms of sy

Ud = ( ) ( ) ( ) ( )
2

2 22
1 2 2 3 3 1

1
6

N
E
ν

σ σ σ σ σ σ
+ ⎡ ⎤− + − + −

⎣ ⎦

  21
3 yE
ν σ+

=

With s2 = 0,

2 2
1 3 1 3(2 2 2 )σ σ σ σ+ − = 

2

2

2 y

N

σ

or 2 2 1/ 2
1 3 1 3( )σ σ σ σ+ − = y

N
σ

This yields the same result as the octahedral shear stress theory.

4.5 A NOTE ON THE USE OF FACTOR OF SAFETY
As remarked earlier, when a factor of safety N is prescribed, we may consider two
ways of introducing it in design:

(i) Design the member so that it safely carries a load NF.
(ii) If the factor associated with failure is X, then see that this factor at any

point in the member does not exceed X/N.
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But the second method of using N is not correct, since by the definition of the
factor of safety, the member is to be designed for N times the load. So long as X
is directly proportional to F, whether one uses NF or X/N for design analysis, the
result will be identical. If X is not directly proportional to F, method (ii) may give
wrong results. For example, if we adopt method (ii) with the maximum energy
theory, the result will be

( )
2

2 2 2
1 2 3 1 2 2 3 3 1

1 12
2 2

yU
E N E

σ
σ σ σ ν σ σ σ σ σ σ⎡ ⎤= + + − + + =⎣ ⎦

where X, the factor associated with failure, is 
2

1
2

y

E
σ

. But method (i) gives

( )
22

2 2 2
1 2 3 1 2 2 3 3 12

2 2
yNU

E E
σ

σ σ σ ν σ σ σ σ σ σ⎡ ⎤= + + − + + =⎣ ⎦

The result obtained from method (i) is correct, since Ns1, Ns2 and Ns3 are the
principal stresses corresponding to the load NF. As one an see, the results are
not the same. The result given by method (ii) is not the right one.

Example 4.2 A  force F = 45,000 N is necessary to rotate the shaft shown in
Fig. 4.5 at uniform speed. The crank shaft is made of ductile steel whose elastic
limit is 207,000 kPa, both in tension and compression. With E = 207 ¥ 106 kPa,
n = 0.25, determine the diameter of the shaft, using the octahedral shear stress
theory and the maximum shear stress theory. Use a factor of safety N = 2.

Solution The moment at section A is
M = 45,000 ¥ 0.2 = 9000 Nm

and the torque on the shaft is
T = 45,000 ¥ 0.15 = 6750 Nm

The normal stress due to M at A is

s = 4 3
64 32
2

Md M
d dπ π

− = −

Consider a point on the periphery at section A for analysis.

A

A

20 cm

15 cm

A

F

Fig. 4.5 Example 4.2
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and the maximum shear stress due to T at A is

t = 4 3
32 16
2

Td T
d dπ π

=

The shear stress due to the shear force F is zero at A. The principal stresses from
Eq. (1.61) are

( )1/ 22 2
1,3 2

1 1 4 , 0
2 2

σ σ σ τ σ= ± + =

(i) Maximum Shear Stress Theory

tmax = ( )1 3
1
2

σ σ−

2 2 1/21 ( 4 )
2
σ τ= +

2 2 1/ 2
3

1 32 ( )
2

M T
dπ

= +

( )1/ 22 2
3 3

16 57295.89000 6750 Pa
d dπ

= + =

With a factor of safety N = 2, the value of tmax becomes

Ntmax = 3
114591.6 Pa

d
This should not exceed the maximum shear stress value at yielding in
uniaxial tension test. Thus,

( ) 6
3

1 207114591.6 10
2 2

y

d

σ
= = ×

\ 3 6 31107 10 md −= ×

or 210.35 10 m 10.4 cmd −= × =

(ii) Octahedral  Shear  Stress  Theory

1/ 22 2 2
oct 1 2 2 3 3 1

1 ( ) ( ) ( )
3

τ σ σ σ σ σ σ⎡ ⎤= − + − + −⎣ ⎦
With s2 = 0,

1/ 22 2
oct 1 3 1 3

1 2 2 2
3

τ σ σ σ σ⎡ ⎤= + −⎣ ⎦
Substituting for s1 and s3 and simplifying

toct = ( )1/ 22 22 3
3

σ τ+

( ) ( )
1/ 22 2

3
2 32 3 16

3
M T

dπ
⎡ ⎤= +⎣ ⎦

( )1/ 22 2
3

16 2 4 3
3

M T
dπ

= +
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( ) ( )
1/ 22 2

3
16 2 4 9000 3 6750
3 dπ

⎡ ⎤= +⎣ ⎦

3
2 343418

3 dπ
= ×

Equating this to octahedral shear stress at yielding of a uniaxial tension
bar, and using a factor of safety N = 2,

3
2 22 343418

33 yd
σ

π
× × =

or 3 3 62 343418 207 10yd dπ σ π× = = × ×

\ 3 31.056 10d −= ×

or 0.1018 m 10.18 cmd = =

Example 4.3 A cylindrical bar of 7 cm diameter is subjected to a torque equal to
3400 Nm, and a bending moment M. If the bar is at the point of failing in accordance
with the maximum principal stress theory, determine the maximum bending moment
it can support in addition to the torque. The tensile elastic limit for the material is
207 MPa, and the factor of safety to be used is 3.

Solution From Example 4.1(i)

2 2 1/ 216 16 ( )M M T+ + = 
3

y
d
N
π σ

i.e. 2 2 1/ 216 16 ( 3400 )M M+ + = 
3 6 67 10 207 10

3
π −× × × ×

or 2 2 1/ 2( 3400 )M + = 4647 M−

or 2 23400M + = 2 24647 9294M M+ −
\ M = 1080 Nm

Example 4.4 In Example 4.3, if failure is governed by the maximum strain
theory, determine the diameter of the bar if it is subjected to a torque T = 3400 Nm
and a bending moment M = 1080 Nm. The elastic modulus for the material is
E = 103 ¥ 106 kPa, n = 0.25, factor of safety N = 3 and sy = 207 MPa.

Solution According to the maximum strain theory and Example 4.1(iii)
3

2 2 1/ 216(1 ) 16(1 ) ( ) y
dM M T N

πν ν σ− + + + =

3
2 2 1/ 2 6(16 0.75 1080) (16 1.25) (1080 3400 ) 207 10

3
dπ× × + × + = × ×
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i.e., 12960 + 71348 = 216.77 ¥ 106 d 3

or d 3 = 389 ¥ 10–6

or d = 7.3 ¥ 10–2 m = 7.3 cm

Example 4.5 An equipment used in deep sea investigation is immersed at a
depth H. The weight of the equipment in water is W. The rope attached to the
instrument has a specific weight gr and the water has a specific weight g. Analyse

Fig. 4.6 Example 4.5

the strength of the rope. The rope has a cross-sectional area A. (Refer to Fig. 4.6.)

Solution The lower end of the rope is subjected to a triaxial state of stress.
There is a tensile stress s1 due to the weight of the equipment and two hydro-
static compressions each equal to p, where

1 2 3,W H
A

σ σ σ γ= = = −  (compression)

At the upper section there is only a uniaxial tension 1σ ′  due to the weight of the
equipment and rope immersed in water.

1 2 3( ) ; 0r
W HAσ γ γ σ σ= + − = =′ ′ ′

Therefore, according to the maximum shear stress theory, at lower section

( )1 3
max

1
2 2

W HA
σ σ

τ γ
−

= = +

and at the upper section

( )1 3
max

1
2 2 r

W H HA
σ σ

τ γ γ
−′ ′

= = − +

If the specific weight of the rope is more than twice that of water, then the upper
section is the critical section. When the equipment is above the surface of the
water, near the hoist, the stress is

1 2 3and 0W
Aσ σ σ′= = =

s ¢1

p

p

p = g H

H s1¢ = rW W
A
+

s1 = W
A

s1

p = g H
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max
1
2

W
Aτ ′=

W ¢ is the weight of equipment in air and is more than W. It is also necessary to
check the strength of the rope for this stress.

4.6 MOHR’S THEORY OF FAILURE
In the previous discussions on failure, all the theories had one common feature.
This was that the criterion of failure is unaltered by a reversal of sign of the
stress. While the yield point stress sy for a ductile material is more or less the
same in tension and compression, this is not true for a brittle material. In such a
case, according to the maximum shear stress theory, we would get two different
values for the critical shear stress. Mohr’s theory is an attempt to extend the
maximum shear stress theory (also known as the stress-difference theory) so as to
avoid this objection.

To explain the basis of Mohr’s theory, consider Mohr’s circles, shown in
Fig. 4.7, for a general state of stress.

t

A

B

s3 s2 s1sn sn

B¢

A¢

O

Fig. 4.7 Mohr’s circles

s1, s2 and s3 are the principal stresses at the point. Consider the line ABB¢A¢. The
points lying on BA and B¢A¢ represent a series of planes on which the normal
stresses have the same magnitude sn but different shear stresses. The maximum
shear stress associated with this normal stress value is t, represented by point
A or A¢. The fundamental assumption is that if failure is associated with a given
normal stress value, then the plane having this normal stress and a maximum
shear stress accompanying it, will be the critical plane. Hence, the critical point for
the normal stress sn will be the point A. From Mohr’s circle diagram, the planes
having maximum shear stresses for given normal stresses, have their representa-
tive points on the outer circle. Consequently, as far as failure is concerned, the
critical circle is the outermost circle in Mohr’s circle diagram, with diameter
(s1 – s3).
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130 Advanced Mechanics of Solids

Now, on a given material, we conduct three experiments in the laboratory,
relating to simple tension, pure shear and simple compression. In each case,
the test is conducted until failure occurs. In simple tension, s1 = syt, s2 =
s3 = 0. The outermost circle in the circle diagram (there is only one circle) corre-
sponding to this state is shown as T in Fig. 4.8. The plane on which failure occurs
will have its representative point on this outer circle. For pure shear, tys = s1 = –s3
and s2 = 0. The outermost circle for this state is indicated by S. In simple com-
pression, s1 = s2 = 0 and s3 = –syc. In general, for a brittle material, syc will be
greater than syt numerically. The outermost circle in the circle diagram for this
case is represented by C.

In addition to the three simple tests, we can perform many more tests
(like combined tension and torsion) until failure occurs in each case, and corre-
spondingly for each state of stress, we can construct the outermost circle. For all
these circles, we can draw an envelope. The point of contact of the outermost
circle for a given state with this envelope determines the combination of s and t,
causing failure. Obviously, a large number of tests will have to be performed on a
single material to determine the envelope for it.

If the yield point stress in simple tension is small, compared to the yield point
stress in simple compression, as shown in Fig. 4.8, then the envelope will cut the
horizontal axis at point L, representing a finite limit for ‘hydrostatic tension’. Simi-
larly, on the left-hand side, the envelope rises indefinitely, indicating no elastic limit
under hydrostatic compression.

For practical application of this theory, one assumes the envelopes to be straight
lines, i.e. tangents to the circles as shown in Fig. 4.8. When a member is subjected
to a general state of stress, for no failure to take place, the Mohr’s circle with
(s1 – s3) as diameter should lie within the envelope. In the limit, the circle can
touch the envelope. If one uses a factor of safety N, then the circle with N(s1 – s3)
as diameter can touch the envelopes. Figure 4.8 shows this limiting state of stress,
where * *

1 1 3 3andN Nσ σ σ σ= = .

Fig. 4.8 Diagram representing Mohr’s failure theory

t
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B
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G
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T
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C
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The envelopes being common tangents to the circles, triangles LCF, LBE
and LAD are similar. Draw CH parallel to LO (the s axis), making CBG and CAH
similar. Then,

BG AH
CG CH

= (a)

Now, BG = BE – GE = BE – CF = * *
1 3

1 1 ( )
2 2ytσ σ σ− −

CG = FE = FO – EO = * *
1 3

1 1( )
2 2 ytσ σ σ+ −

AH = AD – HD = AD – CF * *
1 3

1 1 ( )
2 2ycσ σ σ= − −

CH = FD = FO + OD = * *
1 3

1 1( )
2 2 ycσ σ σ+ +

Substituting these in Eq. (a), and after simplification,

* *
1 3

yt
yt

yc

σ
σ σ σ

σ
= −

1 3( )N kσ σ= − (4.18a)

where yt

yc
k

σ
σ

= (4.18b)

Equation (4.18a) states that for a general state of stress where s1 and s3 are the
maximum and minimum principal stresses, to avoid failure according to Mohr’s
theory, the condition is

1 3
yt

eqk
N
σ

σ σ σ− ≤ =

where N is the factor of safety used for design, and k is the ratio of syt to syc for
the material. For a brittle material with no yield stress value, k is the ratio of s
ultimate in tension to s ultimate in compression, i.e.

ut

uc
k

σ
σ

=  (4.18c)

syt/N is sometimes called the equivalent stress seq in uniaxial tension corresponding
to Mohr’s theory of failure. When syt = syc, k will become equal to 1 and
Eq. (4.18a) becomes identical to the maximum shear stress theory, Eq. (4.2).

Example 4.6 Consider the problem discussed in Example 4.2. Let the crank-
shaft material have syt = 150 MPa and syc = 330 MPa. If the diameter of the
shaft is 10 cm, determine the allowable force F according to Mohr’s theory of
failure. Let the factor of safety be 2. Consider a point on the surface of the shaft
where the stress due to bending is maximum.

Solution Bending moment at section 2(20 10 ) NmA F−= ×

Torque = 2(15 10 ) NmF−×
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\ 4 3
64 32(bending) Pa
2

Md M
d d

σ
π π

= =

4 3
32 16(torsion) Pa
2

Td T
d d

τ
π π

= =

2 2 1/ 2( ,1,3 2
1 1 4 ) 0
2 2

σ σ σ τ σ= ± + =

2 2 1/ 2(1,3 3 4
16 8 4 )M M T

d d
σ

π π
= ± +

2 2 1/ 2
3

8 2 (20 10 ) 10 (1600 22 )
10
F F

π
− −

−
⎡ ⎤= × ± +⎣ ⎦×

80 (40 42.7) 2106 ; 68.75F F F
π

= ± = −

150 0.4545
330

yt

yc
k

σ
σ

= = =

\ 1 3( ) 2 (2106 31.25) 4274.5N k F Fσ σ− = + =
From Eq. (4.18a),

64274.5 150 10 PaytF σ= = ×

or F = 34092N

4.7 IDEALLY PLASTIC SOLID
If a rod of a ductile metal, such as mild steel, is tested under a simple uniaxial
tension, the stress–strain diagram would be like the one shown in Fig. 4.9(a). As
can be observed, the curve has several distinct regions. Part OA is linear, signify-
ing that in this region, the strain is proportional to the stress. If a specimen is
loaded within this limit and gradually unloaded, it returns to its original length

B

C DA

O

S
tre

ss

Strain O

S
tre

ss

Strain
(a) (b)

Fig. 4.9 Stress–strain diagram for (a) Ductile material (b) Brittle material
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without any permanent deformation. This is the linear elastic region and point A
denotes the limit of proportionality. Beyond A, the curve becomes slightly non-
linear. However, the strain upto point B is still elastic. Point B, therefore, repre-
sents the elastic limit.

If the specimen is strained further, the stress drops suddenly (represented by
point C) and thereafter the material yields at constant stress. After D, further
straining is accompanied by increased stress, indicating work hardening. In the
figure, the elastic region is shown exaggerated for clarity.

Most metals and alloys do not have a distinct yield point. The change from the
purely elastic to the elastic-plastic state is gradual. Brittle materials, such as cast
iron, titanium carbide or rock material, allow very little plastic deformation before
reaching the breaking point. The stress-strain diagram for such a material would
look like the one shown in Fig. 4.9(b).

In order to develop stress-strain relations during plastic deformation, the
actual stress-strain diagrams are replaced by less complicated ones. These
are shown in Fig. 4.10. In these, Fig. 4.10(a) represents a linearly elastic material,
while Fig. 4.10(b) represents a material which is rigid (i.e. has no deformation) for
stresses below sy and yields without limit when the stress level reaches the value
sy. Such a material is called a rigid perfectly plastic material. Figure 4.10(c) shows
the behaviour of a material which is rigid for stresses below sy and for stress
levels above sy a linear work hardening characteristics is exhibited. A material
exhibiting this characteristic behaviour is designated as rigid linear work hardening.
Figure 4.10(d) and (e) represent respectively linearly elastic, perfectly plastic and
linearly elastic–linear work hardening.
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Fig. 4.10 Ideal stress-strain diagram for a material that is (a) Linearly elastic (b) Rigid-
perfectly plastic (c) Rigid-linear work hardening (d) Linearly elastic-perfectly
plastic (e) Linearly elastic-linear work hardening
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In the following sections, we shall very briefly discuss certain elementary
aspects of the stress-strain relations for an ideally plastic solid. It is assumed that
the material behaviour in tension or compression is identical.

4.8 STRESS SPACE AND STRAIN SPACE
The state of stress at a point can be represented by the six rectangular stress
components tij (i, j = 1, 2, 3). One can imagine a six-dimensional space called the
stress space, in which the state of stress can be represented by a point. Similarly,
the state of strain at a point can be represented by a point in a six- dimensional
strain space. In particular, a state of plastic strain eij

(p) can be so represented. A
history of loading can be represented by a path in the stress space and the
corresponding deformation or strain history as a path in the strain space.

A basic assumption that is now made is that there exists a scalar function
called a stress function or loading function, represented by f (tij, eij, K), which
depends on the states of stress and strain, and the history of loading. The func-
tion f = 0 represents a closed surface in the stress space. The function f characterises
the yielding of the material as follows:

As long as f < 0 no plastic deformation or yielding takes place; f > 0 has no
meaning. Yielding occurs when f = 0. For materials with no work hardening char-
acteristics, the parameter K = 0.

In the previous sections of this chapter, several yield criteria have been
considered. These criteria were expressed in terms of the principal stresses
(s1, s2, s3) and the principal strains (e1, e2, e3). We have also observed that a
material is said to be isotropic if the material properties do not depend on the
particular coordinate axes chosen. Similarly, the plastic characteristics of the
material are said to be isotropic if the yield function f depends only on the
invariants of stress, strain and strain history. The isotropic stress theory of
plasticity gives function f as an isotropic function of stresses alone. For such
theories, the yield function can be expressed as f (l1, l2, l3) where l1, l2 and l3 are
the stress invariants. Equivalently, one may express the function as f (s1, s2, s3).
It is, therefore, possible to represent the yield surface in a three-dimensional
space with coordinate axes s1, s2 and s3.

The Deviatoric Plane or the ppppp Plane

In Section 4.2(a), it was stated that most metals can withstand considerable
hydrostatic pressure without any permanent deformation. It has also been
observed that a given state of stress can be uniquely resolved into a hydrostatic
(or isotropic) state and a deviatoric (i.e. pure shear) state, i.e.

1 1

2 2

3 3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

p p
p p

P p

σ σ
σ σ

σ σ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

or *[ ] [ ] [ ], ( 1, 2, 3)i ip iσ σ= + = (4.19)
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where 1 2 3
1 ( )
3

p σ σ σ= + +

is the mean normal stress, and
* , ( 1, 2, 3)i i p iσ σ= − =

Consequently, the yield function will be independent of the hydrostatic state. For
the deviatoric state, l1* = 0. According to the isotropic stress theory, therefore,
the yield function will be a function of the second and third invariants of the
devatoric state, i.e. f ( * *

2 3,l l ). The equation
* * *
1 2 3 0σ σ σ+ + = (4.20)

Fig. 4.11 The p Plane

s 2

p plane
(s1, s2, s3)

s 3 P (s *
1, s *

2, s *
3)

s1

D

O

represents a plane passing through the
origin, whose normal OD is equally
inclined (with direction cosines 1/ 3)
to the axes s1, s2 and s3. This plane
is called the deviatoric plane or the p
plane. If the stress state * * *

1 2 3( , , )σ σ σ
causes yielding, the point represent-
ing this state will lie in the p plane.
This is shown by point P in Fig. 4.11.
Since the addition or subtraction of
an isotropic state does not affect the
yielding process, point P can be
moved parallel to OD. Hence, the yield

function will represent a cylinder perpendicular to the p plane. The trace of this
surface on the p plane is the yield locus.

4.9 GENERAL NATURE OF THE YIELD LOCUS
Since the yield surface is a cylinder perpendicular to the p plane, we can discuss
its characteristics with reference to its trace on the p plane, i.e. with reference to
the yield locus. Figure 4.12 shows the p plane and the projections of the s1, s2 and
s3 axes on this plane as s ¢1, s ¢2 and s ¢3. These projections make an angle of 120°
with each other.

Let us assume that the state (6, 0, 0) lies on the yield surface, i.e. the state
s1 = 6, s2 = 0, s3 = 0, causes yielding. Since we have assumed isotropy, the states
(0, 6, 0) and (0, 0, 6) also should cause yielding. Further, as we
have assumed that the material behaviour in tension is identical to that in com-
pression, the states (– 6, 0, 0), (0, – 6, 0) and (0, 0, – 6) also cause yielding. Thus,
appealing to isotropy and the property of the material in tension and compres-
sion, one point on the yield surface locates five other points. If we choose a
general point (a, b, c) on the yield surface, this will generate 11 other (or a total of
12) points on the surface. These are (a, b, c) (c, a, b), (b, c, a), (a, c, b), (c, b, a)
(b, a, c) and the remaining six are obtained by multiplying these by –1. Therefore,
the yield locus is a symmetrical curve.
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4.10 YIELD SURFACES OF TRESCA AND VON MISES
One of the yield conditions studied in Section 4.2 was stated by the maximum
shear stress theory. According to this theory, if s1 > s2 > s3, the yielding starts
when the maximum shear 1

2  (s1 – s3) becomes equal to the maximum shear sy /2 in
uniaxial tension yielding. In other words, yielding begins when s1 – s3 = sy. This
condition is generally named after Tresca.

Let us assume that only s1 is acting. Then, yielding occurs when s1 = sy. The
s1 axis is inclined at an angle of φ  to its projection s ¢1 axis on the p plane, and
sin f = cos q = 1/ 3 , [Fig. 4.12(b)]. Hence, the point s1 = sy will have its projec-
tion on the p plane as sy cos 2 / 3 yφ σ=  along the s ¢1 axis. Similarly, other
points on the p plane will be at distances of 2 / 3 yσ±  along the projections of
s1, s2 and s3 axes on the p plane, i.e., along s ¢1, s ¢2, s ¢3 axes in Fig. 4.13. If s1,
s2 and s3 are all acting (with s1 > s2 > s3), yielding occurs when s1 – s3 = sy.
This defines a straight line joining points at a distance of sy along s1 and –s3
axes. The projection of this line on the p plane will be a straight line joining points
at a distance of 2 / 3 yσ  along the s ¢1 and –s ¢3 axes, as shown by AB in Fig. 4.13.
Consequently, the yield locus is a hexagon.

Another yield criterion discussed in Section 4.2 was the octahedral shearing
stress or the distortion energy theory. According to this criterion, Eq. (4.4b),
yielding occurs when

2 2
1 2 3 1 2( , , ) ( 3 ) yf l l l f l l σ= − = (4.21)

Since a hydrostatic state of stress does not have any effect on yielding, one can
deal with the deviatoric state (for which *

1 0=l ) and write the above condition as
* * * * 2
2 3 2 2( , ) ( ) 3 yf l l f l l σ= = − = (4.22)

The yield function can, therefore, be written as
* 2 * 2
2 2

1
3 yf l l sσ= + = + (4.23)

D
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q
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Fig. 4.12 (a) The yield locus (b) Projection of p plane
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where s is a constant. This yield criterion is known as the von Mises condition for
yielding. The yield surface is defined by

* 2
2 0l s+ =

or 2 2
1 2 2 3 3 1 3p sσ σ σ σ σ σ+ + − = − (4.24)

The other alternative forms of the above expression are
2 2 2 2

1 2 3( ) ( ) ( ) 2p p p sσ σ σ− + − + − = (4.25)
2 2 2 2

1 2 2 3 3 1( ) ( ) ( ) 6sσ σ σ σ σ σ− + − + − = (4.26)
Equation (4.25) can also be written as

* * * 2
1 2 3 2sσ σ σ+ + = (4.27)

This is the curve of intersection between the sphere 2 2 2 2
1 2 3 2sσ σ σ+ + =  and the

p plane defined by * * *
1 2 3 0σ σ σ+ + = . This curve is, therefore, a circle with

radius 2s  in the p plane. The yield surface according to the von Mises criterion
is, therefore, a right circular cylinder. From Eq. (4.23)

2 21 1, or,
3 3y ys sσ σ= = (4.28)

Hence, the radius of the cylinder is 2 / 3 yσ  i.e. the cylinder of von Mises cir-
cumscribes Tresca’s hexagonal cylinder. This is shown in Fig. 4.13.

4.11 STRESS–STRAIN RELATIONS (PLASTIC FLOW)
The yield locus that has been discussed so far defines the boundary of the elastic
zone in the stress space. When a stress point reaches this boundary, plastic
deformation takes place. In this context, one can speak of only the change in the
plastic strain rather than the total plastic strain because the latter is the sum total
of all plastic strains that have taken place during the previous strain history of the
specimen. Consequently, the stress–strain relations for plastic flow relate the

A

B

D

s1

s2

s3

2/3 sy

Fig. 4.13 Yield surfaces of Tresca and von Mises

(a) (b)

s1¢s3¢

s2¢
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strain increments. Another way of explaining this is to realise that the process of
plastic flow is irreversible; that most of the deformation work is transformed into
heat and that the stresses in the final state depend on the strain path. Conse-
quently, the equations governing plastic deformation cannot, in principle, be fi-
nite relations concerning stress and strain components as in the case of Hooke’s
law, but must be differential relations.

The following assumptions are made:
(i) The body is isotropic
(ii) The volumetric strain is an elastic strain and is proportional to the mean

pressure (sm = p = s)
3kε σ=

or 3d kdε σ= (4.29)
(iii) The total strain increments deij are made up of the elastic strain incre-

ments d e
ijε  and plastic strain increaments d p

ijε
e p

ij ij ijd d dε ε ε= + (4.30)
(iv) The elastic strain increments are related to stress components s ij through

Hooke’s law
1 [ ( )]e

xx x y zd
E

ε σ ν σ σ= − +

1 [ ( )]e
yy y x zd Eε σ ν σ σ= − +

1 [ ( )]e
zz z x yd

E
ε σ ν σ σ= − + (4.31)

1e e
xy xy xyd d Gε γ τ= =

1e e
yz yz yzd d

G
ε γ τ= =

1e e
zx zx zxd d

G
ε γ τ= =

(v) The deviatoric components of the plastic strain increments are propor-
tional to the components of the deviatoric state of stress

1 1( ) ( )
3 3

p p p p
xx xx yy zz x x y zd dε ε ε ε σ σ σ σ λ⎡ ⎤ ⎡ ⎤− + + = − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(4.32)

  where dl is the instantaneous constant of proportionality.
From (ii), the volumetric strain is purely elastic and hence

e e e
xx yy zzε ε ε ε= + +

But ( )e e e p p p
xx yy zz xx yy zzε ε ε ε ε ε ε= + + + + +

Hence,

0p p p
xx yy zzε ε ε+ + = (4.33)
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Using this in Eq. (4.32)

1 ( )
3

p
xx x x y zd dε λ σ σ σ σ⎡ ⎤= − + +⎢ ⎥⎣ ⎦

Denoting the components of stress deviator by sij, the above equations and the
remaining ones are

p
xx xxd d sε λ=

p
yy yyd d sε λ=

p
zz zzd d sε λ= (4.34)
p
xy xyd d sγ λ=

p
yz yzd d sγ λ=

p
zx zxd d sγ λ=

Equivalently
p

ij ijd d sε λ= (4.35)

4.12 PRANDTL–REUSS EQUATIONS
Combining Eqs (4.30), (4.31) and (4.35)

( )e
ij ij ijd d d sε ε λ= + (4.36)

where ( )e
ijdε  is related to stress components through Hooke’s law, as given in

Eq. (4.31). Equations (4.30), (4.31) and (4.35) constitute the Prandtl–Reuss equations.
It is also observed that the principal axes of stress and plastic strain increments
coincide. It is easy to show that dl is non-negative. For this, consider the work
done during the plastic strain increment

p p p p p p
p x xx y yy z zz xy xy yz yz zx zxdW d d d d d dσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

( )x xx y yy z zz xy xy yz yz zx zxd s s s s s sλ σ σ σ τ τ τ= + + + + +

( ) ( ) ( ) 2 2 2
x x y y z z xy yz zxd p p pλ σ σ σ σ σ σ τ τ τ⎡ ⎤= − + − + − + + +⎣ ⎦

or ( ) ( ) ( )22 2 2 2 2
p x y z xy yz zxdW d p p pλ σ σ σ τ τ τ⎡ ⎤= − + − + − + + +⎢ ⎥⎣ ⎦

i.e. 2
pdW d Tλ= (4.37)

Since 0pdW ≥

we have 0dλ ≥
If the von Mises condition is applied, from Eqs (4.23) and (4.35)

dWp = dl2s2
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or dl = 
22
pdW

s
(4.38)

i.e dl is proportional to the increment of plastic work.

4.13 SAINT VENANT–VON MISES EQUATIONS
In a fully developed plastic deformation, the elastic components of strain are very
small compared to plastic components. In such a case

p
ij ijd dε ε≈

and this gives the equations of the Saint Venant–von Mises theory of plasticity
in the form

deij = dl sij (4.39)
Expanding this

dexx = ( )2 1
3 2x y zdλ σ σ σ⎡ ⎤− +⎢ ⎥⎣ ⎦

deyy = ( )2 1
3 2y z xdλ σ σ σ⎡ ⎤− +⎢ ⎥⎣ ⎦

dezz = ( )2 1
3 2z x ydλ σ σ σ⎡ ⎤− +⎢ ⎥⎣ ⎦

(4.40)

dgxy = dltxy

dgyz = dltyz

dgzx = dltzx

The above equations are also called Levy–Mises equations. In this case, it should
be observed that the principal axes of strain increments coincide with the axes of
the principal stresses.

4.1 Figure 4.14 shows three elements a, b, c subjected to different states of
stress. Which one of these three, do you think, will yield first according to
(i) the maximum stress theory?
(ii) the maximum strain theory?

7500

28,500
a b c

30,000 21,000

21,000

Fig. 4.14 Problem 4.1
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(iii) the maximum shear stress theory?
  Poisson’s ratio n = 0.25 [Ans. (i) b, (ii) a, (iii) c]

4.2 Determine the diameter of a cold-rolled steel shaft, 0.6 m long, used to trans-
mit 50 hp at 600 rpm. The shaft is simply supported at its ends in bearings.
The shaft experiences bending owing to its own weight also. Use a factor of
safety 2. The tensile yield limit is 280 ¥ 103 kPa (2.86 ¥ 103 kgf/cm2) and the
shear yield limit is 140 ¥ 103 kPa (1.43 ¥ 103 kgf/cm2). Use the maximum shear
stress theory. [Ans. d = 3.6 cm]

4.3 Determine the diameter of a ductile steel bar (Fig 4.15) if the tensile load F
is 35,000 N and the torsional moment T is 1800 Nm. Use a factor of safety
N = 1.5.

 E = 207 ¥ 106 kPa ( )6 22.1 10 kgf /cm×  and syp is 207,000 kPa
(2100 kgf/cm2).

Use the maximum shear stress theory. [Ans. d = 4.1 cm]

4.4 For the problem discussed in Problem 4.3, determine the diameter accord-
ing to Mohr’s theory if 207 MPa, 310 MPayt ycσ σ= = . The factor of
safety N = 1.5; F = 35,000 N and T = 1800 Nm.      [Ans. d = 4.2 cm]

4.5 At a point in a steel member, the state of
stress is as shown in Fig. 4.16. The tensile
elastic limit is 413.7 kPa. If the shearing
stress at the point is 206.85 kPa, when yield-
ing starts, what is the tensile stress s at
the point (a) according to the maximum
shearing stress theory, and (b) according
to the octahedral shearing stress theory?

[Ans. (a) zero; (b) 206.85 kPa (2.1 kgf/cm2)]
4.6 A torque T is transmitted by means of a system of gears to the shaft

shown in Fig. 4.17. If T = 2500Nm (25,510 kgf cm), R = 0.08 m,
a = 0.8 m and b = 0.1 m, determine the diameter of the shaft, using the
maximum shear stress theory. 290000 kPayσ = . The factor of safety is 2.
Note that when a torque is being transmitted, in addition to the tangential
force, there occurs a radial force equal to 0.4F, where F is the tangential
force. This is shown in Fig. 4.17(b).
Hint: The forces F and 0.4F acting on the gear A are shown in
Fig. 4.17(b). The reactions at the bearings are also shown. There
are two bending moments—one in the vertical plane and the other in the

horizontal plane. In the vertical plane, the maximum moment is (0.4 )
( )

Fab
a b+

;

F T

Fig. 4.15 Problem 4.3

t

s

t

s

Fig. 4.16 Problem 4.5
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in the horizontal plane the maximum moment is ( )
( )

Fab
a b+

; both these maxi-

mums occur at the gear section A. The resultant bending is

(M)max = 
1/ 22 20.4 Fab Fab

a b a b
⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

= 1.08F ab
a b+

The critical point to be considered is the circumferential point on the shaft
subjected to this maximum moment. [Ans. d ª 65 mm]

4.7 If the material of the bar in Problem 4.4 has syt = 207 ¥ 106 Pa and
6517 10 Paycσ = ×  determine the diameter of the bar according

to Mohr's theory of failure. The other conditions are as given in
Problem 4.4. [Ans. d = 4.6 cm]

A
DC

(a)
F 

a
a b+

F 
b

a b+

T

C

DA

0.4F
F = T/R

0.4F 
b

a b+
(b)

Fig. 4.17 Problem 4.6

ba

+ +

+

+

0.4 F 
a

a b+
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5.1 INTRODUCTION
In Chapters 1 and 2, attention was focussed on the analysis of stress and strain at
a point. Except for the condition that the material we considered was a continuum,
the shape or size of the body as a whole was not considered. In Chapter 3, the
stresses and strains at a point were related through the material or the constitu-
tive equations. Here too, the material properties rather than the behaviour of the
body as such was not considered. Chapter 4, on the theory of failure, also dis-
cussed the critical conditions to impend failure at a point. In this chapter, we shall
consider the entire body or structural member or machine element, along with the
forces acting on it. Hooke’s law will relate the force acting on the body to the
displacement. When the body deforms under the action of the externally applied
forces, the work done by these forces is stored as strain energy inside the body,
which can be recovered when the latter is elastic in nature. It is assumed that the
forces are applied gradually.

The strain energy methods are extremely important for the solution of many prob-
lems in the mechanics of solids and in structural analysis. Many of the theorems
developed in this chapter can be used with great advantage to solve displacement
problems and statically indeterminate structures and frameworks.

5.2 HOOKE’S LAW AND THE PRINCIPLE
 OF SUPERPOSITION

We have observed in Chapter 3 that the rectangular stress components at a
point can be related to the rectangular strain components at the same point
through a set of linear equations that were designated as the generalised
Hooke’s Law. In this chapter, however, we shall state Hooke’s law as appli-
cable to the elastic body as a whole, i.e. relate the complete system of forces
acting on the body to the deformation of the body as a whole. The law asserts
that ‘deflections are proportional to the forces which produce them’. This is a
very general assertion without any restriction as to the shape or size of the
loaded body.

Energy Methods 5
CHAPTER
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In Fig. 5.1, a force F1 is applied at
point 1, and in consequence, point 2 un-
dergoes a displacement or a def lection,
which according to Hooke's law, is pro-
portionate to F1. This def lection of
point 2 may take place in a direction
which is quite different from that of F1.
If D2 is the actual def lection, we have

D2 = k21F1

where k21 is some proportionality
constant.

When F1 is increased, D2 also in-
creases proportionately. Let d2 be
the component of D2 in a specified
direction. If q is the angle between
D2 and d2

D2

3

1

2

Fig. 5.1 Elastic solid and Hooke's law

F1

F3

d2

q

d2 = D2 cosq = k21 cosq F1

If we keep q constant, i.e. if we fix our attention on the deflection in a specified
direction, then

d2 = a21F1

where a21 is a constant. Therefore, one can consider the displacement of point 2
in any specified direction and apply Hooke’s Law. Let us consider the vertical
component of the deflection of point 2. If d2 is the vertical component, then
Hooke's law asserts that

d2 = a21F1 (5.1)
where a21 is a constant called the ‘influence coefficient’ for vertical deflection at
point 2 due to a force applied in the specified direction (that of F1) at point 1. If F1
is a unit force, then a21 is the actual value of the vertical deflection at 2. If a force
equal and opposite to F1 is applied at 1, then a deflection equal and opposite to
the earlier deflection takes place. If several forces, all having the direction of F1,
are applied simultaneously at 1, the resultant vertical deflection which they pro-
duce at 2 will be the resultant of the deflections which they would have produced
if applied separately. This is the principle of superposition.

Consider a force F3 acting alone at point 3, and let d ¢2 be the vertical compo-
nent of the deflection of 2. Then, according to Hooke’s Law, as stated by Eq. (5.1)

d ¢2 = a23F3 (5.2)
where a23 is the influence coefficient for vertical deflection at point 2 due to a
force applied in the specified direction (that of F3) at point 3. The question
that we now examine is whether the principle of superposition holds true to
two or more forces, such as F1 and F3, which act in different directions and at
different points.

Let F1 be applied first, and then F3. The vertical deflection at 2 is
d2 = a21F1

 +  a ¢23 F3 (5.3)
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where a'23 may be different from a23. This difference, if it exists, is due to the
presence of F1 when F3 is applied. Now apply -F1. Then

2d ′′

= a21F1 + 23a′ F3 - 21a′ F1

21a′  may be different from a21, since F3 is acting when -F1 is applied. Only F3 is
acting now. If we apply -F3, the deflection finally becomes

2d ′′ = a21F1 + 23a′ F3 - 21a′ F1 - a23F3  (5.4)

Since the elastic body is not subjected to any force now, the final deflection given
by Eq. (5.4) must be zero. Hence,

a21F1 + 23a′ F3 - 21a′ F1 - a23F3 = 0

i.e. (a21 - 21a′ )F1 = (a23 - 23a′ )F3

or 21 21

3

a a
F

′− = 23 23

1

a a
F

′−
 (5.5)

The difference a21 - 21a′ , if it exists, must be due to the action of F3. Hence, the

left-hand side is a function of F3 alone. Similarly, if the difference  a23 - 23a′  exists,
it must be due to the action of F1 and, therefore, the right-hand side must be a
function F1 alone. Consequently, Eq. (5.5) becomes

 21 21

3

a a
F

′−  = 23 23

1

a a
F

′−  = k (5.6)

where k is a constant independent of F1 and F3. Hence

23a′ = a23 - kF1

Substituting this in Eq. (5.3)
d2 = a21F1 + a23F3 - kF1F3

The last term on the right-hand side in the above equation is non-linear, which is
contradictory to Hooke's law, unless k vanishes. Hence, k = 0, and

a23 = 23a′ and a21 = 21a′

The principle of superposition is, therefore, valid for two different forces acting at
two different points. This can be extended by induction to include a third or any
number of other forces. This means that the deflection at 2 due to any number of
forces, including force F2 at 2 is

d2 = a21F1 + a22F2 + a23F3 + . . .  (5.7)

5.3 CORRESPONDING FORCE AND DISPLACEMENT OR
 WORK-ABSORBING COMPONENT OF DISPLACEMENT

Consider an elastic body which is in equilibrium under the action of forces F1, F2,
F3, . . . The forces of reaction at the points of support will also be considered as
applied forces. This is shown in Fig. 5.2.
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F5

where a11, a12, a13, . . ., are the influence coefficients of the kind discussed earlier.
The corresponding displacement is also called the work-absorbing component of
the displacement.

5.4 WORK DONE BY FORCES AND ELASTIC STRAIN 
    ENERGY STORED

Equations (5.8) show that the displacements d1, d2, . . .etc., depend on all the
forces F1, F2, . . ., etc. If we slowly increase the forces F1, F2, . . ., etc. from zero to
their full magnitudes, the deflections also increase similarly. For example, when
the forces F1, F2, . . ., etc. are one-half of their full magnitudes, the deflections are

1
2  d1 = ( ) ( )11 1 12 2

1 1 . . .,
2 2

a F a F+ +

1
2  d2 = ( ) ( )21 1 22 2

1 1 . . ., etc.,
2 2

a F a F+ +

i.e. the deflections reached are also equal to half their full magnitudes. Similarly,
when F1, F2, . . ., etc. reach two-thirds of their full magnitudes, the deflections
reached are also equal to two-thirds of their full magnitudes. Assuming that the
forces are increased in constant proportion and the increase is gradual, the work
done by F1 at its point of application will be

W1 = 12 F1d1

= 1
2 F1(a11F1 + a12F2 + a13F3 + . . .)  (5.9)

Similar expressions hold good for other forces also. The total work done by exter-
nal forces is, therefore, given by

W1 + W2 + W3 + . . . = 1
2 (F1d1 + F2d2 + F3d3 + . . .)

Fig. 5.2 Corresponding forces
and displacements

F3

F2

2

a

D1

F1d 1

c
F4

b

1

The displacement d1 in a specified direction
at point 1 is given by Eq. (5.7). If the actual
displacement is D1 and takes place in a direction
as shown in Fig. (5.2), then the component of
this displacement in the direction of force F1
is called the corresponding displacement at
point 1. This corresponding displacement is
denoted by d1. At every loaded point, a cor-
responding displacement can be identified. If
the points of support a, b and c do not yield,
then at these points the corresponding dis-
placements are zero. One can apply Hooke’s
law to these corresponding displacements and
obtain from Eq. (5.7)

d1 = a11F1 + a12F2 + a13F3 + . . .
d2 = a21F1 + a22F2 + a23F3 + . . . etc.   (5.8)
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If the supports are rigid, then no work is done by the support reactions. When the
forces are gradually reduced to zero, keeping their ratios constant, negative work
will be done and the total work will be recovered. This shows that the work done
is stored as potential energy and its magnitude should be independent of the
order in which the forces are applied. If it were not so, it would be possible to
store or extract energy by merely changing the order of loading and unloading.
This would be contradictory to the principle of conservation of energy.

The potential energy that is stored as a consequence of the deformation of any
elastic body is termed elastic strain energy. If F1, F2, F3 are the forces in a particular
configuration and d1, d2, d3 are the corresponding displacements then the elastic
strain energy stored is

U = 12 (F1d1 + F2d2 + F3d3 + . . .) (5.10)

It must be noted that though this expression has been obtained on the assump-
tion that the forces F1, F2, F3 . . ., are increased in constant proportion, the
conservation of energy principle and the superposition principle dictate that this
expression for U must hold without restriction on the manner or order of the
application of these forces.

5.5 RECIPROCAL RELATION
It is easy to show that the influence coefficient a12 in Eq. (5.8) is equal to the
influence coefficient a21. In general, aij = aji. To show this, consider a force F1
applied at point 1, and let d1 be the corresponding displacement. The energy
stored is

U1 = 12 F1d1 = 1
2 a11

2
1F

since        d1 = a11F1

Next, apply force F2 at point 2. The corresponding deflection at point 2 is a22F2
and that at point 1 is a12F2. During this displacement, force F1 is fully acting and
hence, the additional energy stored is

U2 = 1
2 F2(a 22F2) + F1(a12F2)

The total elastic energy stored is therefore

U = U1 + U2  = 1
2 a11

2
1F  + 1

2 a 22
2

2F  + a12 F1F2

Now, if F2 is applied before F1, the elastic energy stored is

U ¢ = 1
2 a22

2
2F  + 1

2 a11
2

1F  + a21F1F2

Since the elastic energy stored is independent of the order of application of F1
and F2, U and U ¢ must be equal. Consequently,

a12 = a21 (5.11a)
or in general

aij = aji (5.11b)
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The result expressed in Eq. (5.11b) has great importance in the mechanics of
solids, as shown in the next section.

One can obtain an expression for the elastic strain energy in terms of the
applied forces, using the above reciprocal relationship. From Eq. (5.10)

U = 1
2 (F1d1 + F2d2 + . . . + Fndn)

= 1
2 F1(a11F1 + a12F2 + . . . + a1nFn)

+ . . . 1
2  Fn(an1F1 + an2F2 + . . . + annFn)

U = 1
2 (a11

2
1F  + a22

2
2F  + . . . + ann

2
nF )

+ 1
2 (a12F1F2 + a13F1F3 + . . . + a1nF1Fn + . . .)

= 1
2 S(a11

2
1F ) + S(a12F1F2) (5.12)

5.6 MAXWELL–BETTI–RAYLEIGH RECIPROCAL
 THEOREM

Consider two systems of forces F1, F2, . . ., and 1F ′, 2F ′ , . . ., both systems having
the same points of application and the same directions. Let d 1, d 2, . . ., be the
corresponding displacements caused by F1, F2, . . ., and 1δ ′ , 2δ ′ , . . . , the corre-
sponding displacements caused by 1F ′, 2F ′ , . . ., Then, making use of the recipro-
cal relation given by Eq. (5.11) we have

1F ′d 1 + 2F ′d 2 + . . . + nF ′ dn

= 1F ′(a11F1 + a12F2 + . . . + a1nFn)

+ 2F ′ (a21F1 + a22F2 + . . . + a2nFn)
+ . . . + nF ′ (an1F1 + an2F2 + . . . + annFn)

= a11F1 1F ′ + a22F2 2F ′  + annFn nF ′

+ a12( 1F ′F2 + 2F ′F1) + a13( 1F ′F3 + 3F ′F1)

+ . . . + a1n( 1F ′Fn + nF ′ F1) (5.13)

The symmetry of the expressions between the primed and unprimed quantities in
the above expression shows that it is equal to

F1 1δ ′  + F2 2δ ′  + . . . + Fn nδ ′

i.e. 1 1 2 2 1 1 2 2. . . . . .F F F Fδ δ δ δ+ + = + +′ ′ ′ ′ (5.14)
In words:

‘The forces of the first system (F1, F2, . . ., etc.) acting through the corresponding
displacements produced by any second system ( 1F ′, 2F ′ , . . ., etc.) do the same
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amount of work as that done by the second system of forces acting through the
corresponding displacements produced by the first system of forces’.

This is the reciprocal theorem of Maxwell, Betti and Rayleigh.

5.7 GENERALISED FORCES AND DISPLACEMENTS
In the above discussions, F1 F2, . . . , etc. represented concentrated forces and
d1, d2, . . . , etc. the corresponding linear displacements. It is possible to extend
the term 'force' to include not only a concentrated force but also a bending
moment or a torque. Similarly, the term 'displacement' may mean linear or angular
displacement. Consider, for example, the elastic body shown in Fig. 5.3, sub-
jected to a concentrated force F1 at point 1 and a couple F2 = M at point 2. d1
will now stand for the corresponding linear displacement of point 1 and d2 for
the corresponding angular rotation of point 2. If F1 is a unit force acting alone,
then a11, the influence coefficient, gives the linear displacement of point 1 cor-
responding to the direction of F1. Similarly, a12 stands for the corresponding
linear displacement of point 1 caused by a unit couple F2 applied at point 2. a21
gives the corresponding angular rotation of point 2 caused by a unit concen-
trated force F1 at point 1.

The reciprocal relation a12 = a21 can also be
interpreted appropriately. For example, making
reference to Fig. 5.3, the above relation reveals
that the linear displacement at point 1 in the
direction of F1 caused by a unit couple acting
alone at point 2, is equal to the angular rotation
at point 2 in the direction of the moment F2
caused by a unit load acting alone at point 1.
This fact will be demonstrated in the next
few examples.

With the above generalised definitions for
forces and displacements, the work done when
the forces are gradually increased from zero to
their full magnitudes is given by

W = ( )1 1 2 2
1 . . .2 n nF F Fδ δ δ+ + +

The reciprocal theorem of Maxwell, Betti and Rayleigh can also be given wider
meaning with these extended definitions.

1

2

F1

Fig. 5.3 Generalised forces
and displacements

Example 5.1 Consider a cantilever loaded by unit concentrated forces, as shown

a21

2 2
a12

1
F2 = 1

2/3 L F1 = 1

( b )(a)

Fig. 5.4 Example 5.1

in Figs. 5.4(a) and (b). Check the deflections at points 1 and 2.
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Solution In Fig. 5.4(a), the unit load F1 acts at point 1. As a result, the deflec-
tion of point 2 is a21. In Fig. 5.4(b) the unit load F2 acts at point 2 and as a result,
the deflection of point 1 is a12. The reciprocal relation conveys that these two
deflections are equal. If L is the length of the cantilever and if point 1 is at a
distance of 2

3
L from the fixed end, we have from elementary strength of materials

d2 due to F1= deflection at 1 due to F1 + deflection due to slope

  
3 38 4

81 54
L L
EI EI

= +

d1 due to F2 = deflection at 1 due to a unit load at 1 + deflection at 1
due to a moment (L/3) at 1

3 38 4
81 54

L L
EI EI

= +

Example 5.2 Consider a cantilever beam subjected to a concentrated force F at
point 1 (Fig 5.5). Let us determine the curve of deflection for the beam.

Fig. 5.5 Example 5.2

F

4 3 2

1

P = F2 at point 2. Point 2 is 2/3 L from the fixed end. Verify the reciprocal theorem.

d2 = Ma21 2

M = F1

1

P

2 1
q1 = Pa12

( b )(a)

Fig. 5.6 Example 5.3

2/3 L

Solution One obvious method would be to use a travelling microscope and
take readings at points 2, 3, 4, etc. These readings would be very small and
consequently, errors would creep in. On the other hand, the reciprocal relation
can be used to obtain this curve of deflection more accurately. The deflection at
2 due to F at 1 is the same as the deflection at 1 due to F at 2, i.e. a21 = a12.
Similarly, the deflection at 3 due to F at 1 is the same as the deflection at 1 due to
F at 3, i.e. a31 = a13. Hence, one observes the deflections at 1 as F is moved along
the beam to get the required information.

Example 5.3 The cantilever beam shown in Fig. 5.6(a) is subjected to a bending
moment M = F1 at point 1, and in Fig. 5.6(b), it is subjected to a concentrated load
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Solution From elementary strength of materials the deflection at point 2 due to
the moment M at point 1 is

d 2 = ( )2 22 1 2
3 2 9

MLM L
EI EI

=

The slope (angular displacement) at point 1 due to the concentrated force P at
point 2 is

q1 = ( )2 22 1 2
3 2 9

PLP L
EI EI

=

Hence, the work done by M through the displacement (angular displacement)
produced by P is equal to

Mq1 = 
22

9
MPL

EI
This is equal to the work done by P acting through the displacement produced by
the moment M.

Example 5.4 Determine the change in volume of an elastic body subjected to two
equal and opposite forces, as shown. The distance between the points of application

is h and the elastic constants for the
material are E and n, (Fig. 5.7).

Solution This is a very general
problem, the solution of which is ap-
parently difficult. However, we can
get a solution very easily by apply-
ing the reciprocal theorem. Let the
elastic body be subjected to a hydro-
static pressure of value s. Every vol-
ume element will be in a state of
hydrostatic (isotropic) stress. Conse-
quently, the unit contraction in any
direction from Fig. 5.7(b) is

Fig. 5.7 Example 5.4

( b )

B

P

s

s

s
A

(a)
P

e = 2 (1 2 )E E E
σ σ σν ν− = −

The two points of application A and B, therefore, move towards each other by a
distance.

Dh = (1 2 )h E
σν−

Now we have two systems of forces:
System 1 Force P

Volume change DV

h
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System 2 Force s
Distance change Dh

From the reciprocal theorem
P Dh = s DV

or DV = P h
σ
∆

 (1 2 )Ph
E ν= −

If n is equal to 0.5, the change in volume is zero.

5.8 BEGG¢¢¢¢¢S DEFORMETER
In this section, we shall demonstrate the application of the reciprocal theorem to
a problem in experimental mechanics. Figure 5.8 shows a structural member sub-
jected to a force P at point E. It is required to determine the forces of reaction at
point B. The reaction forces are V, H and M and these make the displacements
(vertical, horizontal and angular) at B equal to zero. A theoretical analysis is quite
difficult for an odd structure like the one shown. The reactions at the other
supports also are such that the displacement at these supports are zero. To determine
V at B we proceed as follows.

A

M
H B

C

D
E

P

V
Fig. 5.8 Reactions due to force P

A known vertical displacement 2δ ′  is imposed at B, keeping A, C, D fixed and
preventing angular rotation and horizontal displacement at B. The corresponding
displacement at E (i.e. displacement in the direction of P) is measured. Let this be 1δ ′ .
During the vertical displacement of B, the forces V ¢, M ¢ and H ¢ that are induced at B
are not measured. The two systems involved in the reciprocal theorem are as follows:
System 1 Specified

Forces V, H, M at B (unknown) and other reactive forces
at A, C, D (also unknown), P at E (known)

Corresponding displacements 0, 0, 0 at B; 0, 0, 0 at A, C and D; d1 (unknown) at E.
System 2 Experimental

Forces V ¢, H ¢, M ¢ at B (unknown) and other reactive forces at
A, C, D (all unknown); 0 at E (i.e. point E not loaded)

d¢
2
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Corresponding displacements 2δ ′ , 0, 0 at B; 0, 0, 0 at A, C and D; 1δ ′  at E
Applying the reciprocal theorem

( ) ( ) ( ) ( )2 10 0 0V H M Pδ δ′ ′⋅ + ⋅ + ⋅ + + ⋅

( ) ( ) ( ) ( )10 0 0 0 0V H M δ′ ′ ′= ⋅ + ⋅ + ⋅ + + ⋅

i.e.- V = 1

2
P δ
δ
′

− ′
(5.15)

Since 2δ ′  is the known displacement imposed at B and 1δ ′ is the corresponding
displacement at E that is experimentally measured, the value of V can be deter-
mined. It is necessary to remember that the corresponding displacement 1δ ′ at E is
positive when it is in the direction of P.

To determine H at B, we proceed as above. A known horizontal displacement
2δ ′  is imposed at B, with all other displacements being kept zero. The correspond-

ing displacement 1δ ′ at E is measured. The result is

H = - 1

2
P δ
δ
′
′

To determine M at B, a known amount of small rotation q ¢ is imposed at B,
keeping all other displacements zero. The corresponding displacement 1δ ′ result-
ing at E is measured. The reciprocal theorem again gives

M = 1P
δ
θ
′

− ′

5.9 FIRST THEOREM OF CASTIGLIANO
From Eq. (5.12), the expression for the elastic strain energy is

U = ( )2 2 2
11 1 22 2

1 . . .
2 nn na F a F a F+ + +

( )12 1 2 13 1 3 1 1. . . . . .n na F F a F F a F F+ + + + +

In the above expression, F1, F2, etc. are the generalised forces, i.e. concentrated
loads, moments or torques. a11, a12, . . . , etc. are the corresponding influence
coefficients. The rate at which U increases with F1 is given by 

1

U
F

∂
∂ . From the

above expression for U,

1

U
F

∂
∂ = 11 1 12 2 13 3 1. . . n na F a F a F a F+ + + +

This is nothing but the corresponding displacement at F1, Eq. (5.8). Hence, if d1
stands for the generalised displacement (linear or angular) corresponding to the
generalised force F1, then

1

U
F

∂
∂ = d1 (5.16)
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In exactly the same way, one can show that

2

U
F

∂
∂ = 2 3

3
, , . . ., etc.U

F
∂δ δ
∂

=

That is to say, ‘the partial differential coefficient of the strain energy function
with respect to Fr gives the displacement corresponding with Fr’. This is Castigliano's
first theorem. In the form derived in Eq. (5.16), the theorem is applicable to only
linearly elastic bodies, i.e. bodies satisfying Hooke's Law (see Sec. 5.15).

This theorem is extremely useful in de-
termining the displacements of structures
as well as in the solutions of many stati-
cally indeterminate structures. Several
examples will illustrate these subse-
quently. We can give an alternative proof
for this theorem as follows:

Consider an elastic system in equilib-
rium under the force F1, F2, . . . Fn, etc.
(Fig. 5.9). Some of these are concentrated
loads and some are couples and torques.
Let the strain energy stored be U. Now
increase one of the forces, say Fn, by
DFn and as a result the strain energy in-
creases to U + DU, where

DU = n
n

U FF
∆ ∆
∆

Now we calculate the strain energy in a different manner. Let the elastic system be
free of all forces. Let D Fn be applied first. The energy stored is

1
2 n nF δ∆ ∆

where Ddn is the elementary displacement corresponding to D Fn. This is a quan-
tity of the second order which can be neglected since D Fn will be made to tend to
zero in the limit. Next, we put all the other forces, F1, F2 , . . . ,etc. These forces by
themselves do an amount of work equal to U. But while these displacements are
taking place, the elementary force DFn is acting all the time with full magnitude at
the point n which is undergoing a displacement dn. Hence, this elementary force
does work equal to D Fn dn. The total energy stored is therefore

1
2n n n nU F Fδ δ+ ∆ + ∆ ∆

Equating this to the previous expression, we get

1
2n n n n n

n

UU F U F FF δ δ∆+ ∆ = + ∆ + ∆ ∆
∆

In the limit, when DFn Æ 0

n
n

U
F

∂ δ
∂

=

F2

F1

F3

F5 F4

Fn

Fig. 5.9 Elastic body in equilibrium
under forces F1, F2, etc.
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it is important to note that dn is a linear displacement if Fn is a concentrated load,
or an angular displacement if Fn is a couple or a torque. Further, we must express
the strain energy in terms of the forces (including moments and couples) since it
is the partial derivative with respect to a particular force that gives the corre-
sponding displacement. In the next section, expressions for strain energies in
terms of forces will be obtained.

5.10 EXPRESSIONS FOR STRAIN ENERGY
In this section we shall develop expressions for strain energy when an elastic
member is subjected to axial force, shear force, bending moment and torsion.
Figure 5.10(a) shows an elastic member subjected to several forces. Consider a
section of the member at C. In general, this section will be subjected to three
forces Fx, Fy and Fz and three moments Mx, My and Mz (Fig. 5.10(b)). The force Fx
is the axial force and forces Fy and Fz are the shear forces across the section.
Moment Mx is the torque T and moments My and Mz are the bending moments
about the y and z axes respectively. Let Ds be an elementary length of the
member; then when Ds is very small, we can assume that these forces and
moments remain constant over Ds. At the left-hand section of this elementary
member, the forces and moments have opposite signs. During the deformation
caused by the axial force Fx alone, the remaining forces and moments do no
work. Similarly, during the twist caused by the torque T = Mx, no work is as-
sumed to be done (since the deformations are extremely small) by the other
forces and moments.

Consequently, the work done by each of these forces and moments can be
determined individually and added together to determine the total elastic strain
energy stored by Ds while it undergoes deformation. We shall make use of the
formulas available from elementary strength of materials.

B

A

C

CF1 F2

F3

My

DS Fy

Fx

Mx
Fz

Mz

(a)

Fig. 5.10 Reactive forces at a general cross-section

(b)
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(i) Elastic energy due to axial force: If dx is the axial extension due to Fx, then

DU = 1
2 x xF δ

= 1
2

x
x

F
F sAE⋅ ∆

using Hooke's law.

  \ DU = 
2

2
xF

sAE ∆ (5.17)

A is the cross-sectional area and E is Young's modulus.
(ii) Elastic energy due to shear force: The shear force Fy (or Fz) is distrib-

uted across the section in a complicated manner depending on the
shape of the cross-section. If we assume that the shear force is distrib-
uted uniformly across the section (which is not strictly correct), the
shear displacement will be (from Fig. 5.11) D s Dg and the work done by
Fy will be

DU = 1
2 yF s γ∆ ∆

From Hooke's law,

  Dg  = yF
AG

where A is the cross-sectional area
and G is the shear modulus. Sub-
stituting this

DU  = 1
2

y
y

F
F s AG∆

or   DU = 
2

2
yF

sAG ∆

It will be shown that the strain energy due to shear deformation is ex-
tremely small, which is often ignored. Hence, the error caused in assuming
uniform distribution of the shear force across the section will be very
small. However, to take into account the different cross-sections and non-
uniform distribution, a factor k is introduced. With this

DU = 
2

2
yk F

sAG ∆ (5.18)

A similar expression is obtained for the shear force Fz.
(iii) Elastic energy due to bending moment: Making reference to Fig. 5.12, if Df

is the angle of rotation due to the moment Mz(or My), the work done is

DU = 1
2 zM φ∆

Dg
Ds Dg

Ds
Fig. 5.11 Displacement due to

 shear force
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From the elementary flexure formula, we
have

z

z

M
I

 = E
R

or 1
R  = z

z

M
EI

where R is the radius of curvature and lz
is the area moment of inertia about the z
axis. Hence

Df = z

z

Ms sR EI
∆

= ∆

Substituting this

DU = 
2

2
z

z

M
s

EI
∆ (5.19)

A similar expression can be obtained for the moment My.
(iv) Elastic energy due to torque : Because of the torque T, the elementary

member rotates through an angle Dq according to the formula for a
circular section

p

T
I

 = G
s
θ∆

∆

i.e. Dq  = 
p

T sGI ∆

lp is the polar moment of inertia. The work done due to this twist is,

DU = 1
2

T θ∆

= 
2

2 p

T s
GI

∆ (5.20)

Equations (5.17)-(5.20) give important expressions for the strain energy
stored in the elementary length Ds of the elastic member. The elastic
energy for the entire member is therefore

(i) Due to axial force U1 = 
2

0 2
S

xF
ds

AE∫ (5.21)

(ii) Due to shear force U2 = 
2

0 2
S y yk F

ds
AG∫ (5.22)

U3 = 
2

0 2
S

z zk F
ds

AG∫ (5.23)

(iii) Due to bending moment U4 = 
2

0 2
S y

y

M
ds

EI∫ (5.24)

MzDs

Fig. 5.12 Displacement due
to bending moment

R

Df

Mz
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U5 = 
2

0 2
S

z

z

M
ds

EI∫ (5.25)

(iv) Due to torque U6 = 
2

0 2
S

p

T ds
GI∫ (5.26)

Example 5.5 Determine the deflection at end A of the cantilever beam shown in
Fig. 5.13.

U1 = ( )2 2 3

0 2 6
L Px dx P L

EI EI
=∫

The elastic energy due to shear from Eq. (5.22) is (putting k1 = 1)

U2 = 

22

0 2 2
L P LP dx

AG AG
=∫

One can now show that U2 is small as compared to U1. If the beam is of a
rectangular section

A = 31,
12

bd I bd=

and 2G ª E
Substituting these

2

1

U
U

 = 
2 3

2 3
6 2

2 12
P L bd G
bdG P L

⋅ ⋅

= 
2

22
d
L

For a member to be designated as beam, the length must be fairly large com-
pared to the cross-sectional dimension. Hence, L > d and the above ratio is
extremely small. Consequently, one can neglect shear energy as compared to
bending energy. With

U = 
2 3

6
P L

EI
we get

U
P

∂
∂

3

3 A
P L

EI
δ= =

which agrees with the solution from elementary strength of materials.

B
L

A

P
Fig. 5.13 Example 5.5

x
Solution The bending moment
at any section x is

M = Px
The elastic energy due to bend-
ing moment is, therefore, from
Eq. (5.24)
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Example 5.6 For the cantilever of total length L shown in Fig. 5.14, determine
the deflection at end A. Neglect shear energy.

Solution The bending energy is

U = ( ) ( )1

1

2 2

1 20 2 2

L L

L

Px Px
dx dxEI EI+∫ ∫

( )
2 3 2

3 31
1

1 26 6
P L P L L

EI EI
= + −

dA = ( )
3

3 31
1

1 23 3
P LU P L L

P EI EI
∂
∂

= + −

Example 5.7 Determine the support reaction for the propped cantilever (Fig. 5.15.)

Solution The reaction R at A is such that the deflection there is zero. The
energy is

U = 
( ) ( ) 22

0 02 2
b a R b x PxRx

dx dx
EI EI

− + +⎡ ⎤− ⎣ ⎦+∫ ∫

U = 
2 3 2 2 2 3 2 21
6 2 6 2

R b R b a R a R ba
EI

⎛
+ + +⎜

⎝

+ 
2 3 2 32
6 2 6

P a PRb a PRa ⎞
− − ⎟

⎠

U
R

∂
∂

= 
3 3 2 3

2 21
3 3 2 3

Rb Ra Pba PaRb a Rba
EI

⎛ ⎞
+ + + − −⎜ ⎟

⎝ ⎠

Equating this to zero and solving for R,

R = 
( )

2

3
3 2

2
b aPa
b a
+

+

Remembering that a + b = L, the length of cantilever,

R = ( ) ( )2 3
2 2

a aP
L L

−

I2
A

P

Fig. 5.14 Example 5.6

L2 L1

I1

P

A

R

ba

Fig. 5.15 Example 5.7
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Example 5.8 For the structure shown in Fig. 5.16, what is the vertical deflection at
end A?

Solution The moment at any section q of the
curved part is Pr (1 - cos q ). The bending mo-
ment for the vertical part of the structure is a
constant equal to 2Pr. The bending energy
therefore is

( ) ( )2 2

0 0

1 cos 2
2 2

LPr Pr
r d dxEI EI

π θ
θ

⎡ − ⎤⎣ ⎦ +∫ ∫

We neglect the energy due to the axial force.
Then

U = 
2 3 2 223

4
P r P r L
EI EI

π
+

\ dA  = ( ) 23 Pr42
U r LP EI

∂ π
∂

= +

Example 5.9 The end of the semi-circular member shown in Fig. 5.17, is subjected
to torque T. What is the twist of end A? The member is circular in section.

Solution The torque is a mo-
ment in the xy plane and can be
represented by vector T, as
shown. At any section q, this
vector can be resolved into two
components T cosq and T sinq.
The component T cosq acts as
torque and the component T sinq
as a moment.

The energy due to torque
is, from Eq. (5.26),

U1 = ( )2

0

cos
2 P

T
r d

GI
π θ

θ∫

 
2

4 P

rT
GI
π=

The energy due to bending is, from Eq. (5.24),

U2  = 
( )2

0

sin
2

T
r dEI

π θ
θ∫

2

4
rT
EI

π=

Fig. 5.16 Example 5.8
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r

L
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y

O

(b) Plan View(a)

Fig. 5.17 Example 5.9
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x
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A
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nqq
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Ip is the polar moment of inertia. For a circular member

Ip = 
4

2
2
rI π=

Substituting, the total energy is

U = 
2

1 2
1 1

4 p

rTU U
GI EI

π ⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
Hence, the twist is

q = ( ) 4
1 1 2

2 2
U rT
T G E r

∂ π
∂ π

= +

( )3
1 1 1

2
T

G Er
= +

5.11 FICTITIOUS LOAD METHOD
Castigliano's first theorem described above helps us to determine the displace-
ment at a point corresponding to the force acting there. Situations arise where it
may be desirable to determine the displacement (either linear or angular) at a point
where there is no force (concentrated load or a couple) acting. In such situations,
we assume a small fictitious or dummy load to be acting at the point where the
displacement is required. Castigliano's theorem is then applied, and in the final
result, the fictitious load is put equal to zero. The following example will describe
the technique.

Example 5.10 Determine the slope at end A of the cantilever in Fig. 5.18 which

P

L

Fig. 5.18 Example 5.10

MA

Solution To determine the
slope by Castigliano's method
we have to determine U and
take its partial derivative with
respect to the corresponding
force, i.e. a moment. But no
moment is acting at A. So, we
assume a fictitious moment M

is subjected to load P.

to be acting at A and determine the slope caused by P and M. Since the magnitude of
M is actually zero, in the final result, M is equated to zero.

The energy due to P and M is,

U  = 
( )2

0 2
L Px M

dx
EI
+

∫

2 3 2 2

6 2 2
P L M L MPL

EI EI EI
= + +
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q = 
2

2
U ML PL
M EI EI

∂
∂

= +

This gives the slope when M and P are both acting. If M is zero, the slope due to
P alone is

q = 
2

2
PL
EI

If on the other hand, P is zero and M alone is acting the slope is

q = ML
EI

Example 5.11 For the member shown in Fig. 5.16, Example 5.8, determine the
ratio of L to r if the horizontal and vertical deflections of the loaded end A are
equal. P is the only force acting.

Solution In addition to the vertical for P at A, apply a horizontal fictitious force
F to the right. The bending moment at section q of the semi-circular part is

M1 = Pr (1 - cos q ) - Fr sin q )
At any section x in the vertical part, the moment is

M2 = 2Pr + Fx
Hence,

U = ( ) ( )2 2

0 0

1 11 cos sin 2
2 2

L
Pr Fr r d Pr Fx dx

EI EI
π

θ θ θ− − + +⎡ ⎤⎣ ⎦∫ ∫

\ U
F

∂
∂

= ( ) ( )
2

0 0

1Pr 1 cos sin sin 2
Lr Fr d Pr Fx x dx

EI EI
π

θ θ θ θ− − − + +⎡ ⎤⎣ ⎦∫ ∫
and

0F

U
F =

∂
∂

= ( )
2

0 0

11 cos sin 2
L

h
r Pr d Pr xdx
EI EI

π
δ θ θ θ=− − +⎡ ⎤⎣ ⎦∫ ∫

( )3 2
2 22 2Pr PrL Pr r LEI EI EI= − + = − +

From Example 5.8

  dv = ( )2 3 4
2

Pr r L
EI

π +

Equating dv to dh

( ) ( )
2

2 23 4 2
2

Pr Prr L r L
EI EI

π + = − +

or ( )2 2 34 2 0
2

L Lr r π− − + =

Dividing by r2 and putting L
r

 = r

( )2 34 2 0
2
πρ ρ− − + =
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Solving,
( )4 16 4 3 /2 2

2
π

ρ
± + +⎡ ⎤⎣ ⎦=

or 32 6
2

ρ π= + +

5.12 SUPERPOSITION OF ELASTIC ENERGIES
When an elastic body is subjected to several forces, one cannot obtain the
total elastic energy by adding the energies caused by individual forces. In
other words, the sum of individual energies is not equal to the total energy of
the system. The reason for this is simple. Consider an elastic body subjected
to two forces F1 and F2. When F1 is applied first, let the energy stored be U1.
When F2 is applied next (with F1 continuing to act), the additional energy
stored is equal to U2 due to F2 alone, plus the work done by F1 during the
displacement caused by F2. Hence, the total energy stored when both F1 and
F2 are acting is equal to (U1 + U2 + U3), where U1 is the work energy caused by
F1 alone, U2 is the work energy caused by F2 alone, and U3 is the energy due
to the work done by F1 during the displacement caused by F2. Another way of
observing this is to note that the strain energy functions are not linear func-
tions. Hence, individual energies cannot be added to get the total energy. As
a specific example, consider the cantilever shown in Fig. 5.18, Example 5.10.
Let P and M be actual forces acting on the cantilever, i.e M is not a fictitious
force as was assumed in that example. The elastic energy stored due to P and
M is given by (a), i.e.

U = 
2 3 2 2

6 2 2
P L M L MPL

EI EI EI
+ +

The energy due to P alone is

U1 = 
2 3

2

0

1 ( )
2 6

L P LPx dx
EI EI

=∫

Similarly, the energy due to M alone is

U2 = 
2

2

0

1
2 2

L M LM dx
EI EI

=∫

Obviously, U1 + U2 is not equal to U. However, if P is applied first and then M,
the total energy is given by U1 + U2 + work done by P during the displacement
caused by M.

The deflection at the end of the cantilever (where P is acting with full magni-
tude) caused by M is

d *
A = 

2

2
ML

EI
During this deflection, the work done by P is

U3 = 
2

2
MLP

EI
⎛ ⎞
⎜ ⎟
⎝ ⎠
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If this additional energy is added to U1 + U2, then one gets the previous expres-
sion for U. It is immaterial whether P is applied first or M is applied. The order of
loading is immaterial. Thus, one should be careful in applying the superposition
principle to the energies. However, the individual energies caused by axial force,
bending moment and torsion can be added since the force causing one kind of
deformation will not do any work during a different kind of deformation caused by
another force. For example, an axial force causing linear deformation will not do
work during an angular deformation (or twist) caused by a torque. This is true in
the case of small deformation as we have been assuming throughout our discus-
sions. Similarly, a bending moment will not do any work during axial or linear
displacement caused by an axial force.

5.13 STATICALLY INDETERMINATE STRUCTURE
Many statically indeterminate structural problems can be conveniently solved,
using Castigliano's theorem. The technique is to determine the forces and
moments to produce the required displacement. Example 5.7 was one such prob-
lem. The following example will further illustrate this method.

Example 5.12 A rectangular frame with all four sides of equal cross section is
subjected to forces P, as shown in Fig. 5.19. Determine the moment at section C and

( b )(a)

Fig. 5.19 Example 5.12

P

C C

P

b

a

M0

P /2

2 b

aa

also the increase in the dis-
tance between the two points
of application of force P.

Solution The symmetry
conditions indicate that the
top and bottom members
deform in such a manner
that the tangents at the
points of loading remain hori-
zontal. Also, there is no
change in slopes at sections
C-C. Hence, one can con-
sider only a quarter part of
the frame, as shown in (b).

Considering only the bending energy and neglecting the energies due to direct
tension and shear force, we get

U ¢ = 
( )22

00

0 0

/2
2 2

b a M P xM
dx dx

EI EI
−

+∫ ∫

 
2

2 2 2 3
0 0 0

1 1
2 2 12

aM b M a M P P a
EI

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
Because of symmetry, the change in slope at section C is zero. Hence

0

U
M
∂
∂

′ = 2
0

1 12 ( )
2 2

M a b Pa
EI

⎡ ⎤+ −⎢ ⎥⎣ ⎦
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Equating this to zero,

M0 = ( )
2

4
Pa
a b+

To determine the increase in distance between the two load points, we determine
the partial derivative of 4U¢ with respect to P (assuming that the bottom loaded
point is held fixed).

U = 
( )

( ) ( )
2 4 2 4 2 3

2
44

2 12816
P a P a P aU a b

EI a ba b

⎡ ⎤
′ ⎢ ⎥= + − +

+⎢ ⎥+⎣ ⎦

\   U
P

∂
∂

= 
( )
( )

3 4
12

a bPa
EI a b

+
+

Example 5.13 A thin circular ring of radius r is subjected to two diametrically
opposite loads P in its own plane as shown in Fig. 5.20(a). Obtain an expression for
the bending moment at any section. Also, determine the change in the vertical
diameter.

Solution Because of symmetry, during deformation there is no change in the
slopes at A and B. So, one can consider only a quarter of the ring for calculation
as shown in Fig. 5.20(c). The value of M0 is such as to cause no change in slope
at B. Section at A can be considered as built-in.

Moment at q = ( ) 01 cos
2
PM r Mθ= − −

U = ( )
/ 2 2

0
0

1 1 cos
2 2

P r M r d
EI

π
θ θ⎡ ⎤− −⎢ ⎥⎣ ⎦∫

Since there is no change in slope at B

( )
/ 2

0
0 0

2 1 cos 0
2 2

U r P r M d
M EI

π∂ θ θ
∂

⎡ ⎤= − − − =⎢ ⎥⎣ ⎦∫

P

r q

P

A

B

A

M0

B

P /2

M0

P /2

A

M0

B

P /2

Fig. 5.20 Example 5.13

(a)

q

( b ) (c)
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i.e. ( )
/ 2

0
0

1 cos 0
2
P r M d

π
θ θ⎡ ⎤− − =⎢ ⎥⎣ ⎦∫

i.e. ( ) 01 0
2 2 2
P r Mπ π− − =

or M0  = ( )21
2

Pr
π

−

\ M at q  = ( ) ( ) ( )2 21 cos 1 cos
2 2 2
P P Prr rθ θ

π π
− − − = −

To determine the increase in the diameter along the loads, one has to determine the
elastic energy and take the differential. If one considers the quarter ring, Fig. 5.20(c),
the elastic energy is

U * = ( ) 2/ 2

0

1 2 cos
2 2

Pr r d
EI

π
θ θ

π
⎡ ⎤−⎢ ⎥⎣ ⎦∫

The differential of this with respect to (P/2) will give the vertical deflection of the
end B with reference to A. Observe that in order to determine the deflection at B,
one has to take the differential with respect to the particular load that is acting at
that point, which is (P/2). Putting (P/2) = Q.

U * = ( ) 2/ 2

0

1 2 cos
2

Qr r d
EI

π
θ θ

π
⎡ ⎤−⎢ ⎥⎣ ⎦∫

( )/ 22 3 2

0

2 cos
2

Q r d
EI

π
θ θ

π
= −∫

\
*U

Q
∂
∂

/ 23
2

2
0

4 4cos cosQ r d
EI

π
θ θ θ

ππ
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∫

3

2
4 4

2 4
Qr
EI

π π
ππ

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

( ) ( )3 32 2
4 2 4

Qr Pr
EI EI

π π
π π

= − = −

As this gives only the increase in the radius, the increase in the diameter is twice
this quantity, i.e.

dv = ( )3 2
4

Pr
EI

π
π

−

5.14 THEOREM OF VIRTUAL WORK
Consider an elastic system subjected to a number of forces (including moments)
F1, F2, . . . , etc. Let d1, d2, . . ., etc. be the corresponding displacements. Remember
that these are the work absorbing components (linear and angular displacements)
in the corresponding directions of the forces (Fig. 5.21).

Let one of the displacements d1 be increased by a small quantity Dd1. During
this additional displacement, all other displacements where forces are acting are
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F1

F2

F3

d 1

d2

d3

Fig. 5.21 Generalised forces and
displacements

held fixed, which means that additional
forces may be necessary to maintain
such a condition. Further, the small
displacement Dd1 that is imposed must be
consistent with the constraints acting. For
example, if point I is constrained in such a
manner that it can move only in a particu-
lar direction, then Dd1 must be consistent
with such a constraint. A hypothetical
displacement of such a kind is called a
virtual displacement. In applying this vir-
tual displacement, the forces F1, F2, . . .,
etc. (except F1) do no work at all because
their points of application do not move
(at least in the work-absorbing direction).
The only force doing work is F1 by an

amount F1 Dd1 plus a fraction of DF1 Dd1, caused by the change in F1. This
additional work is stored as strain energy DU. Hence

DU = F1 Dd1 + k DF1 Dd1

or
1

U
δ
∆
∆

= 1 1F k F+ ∆

and
1 0 1
Lt U
δ δ∆ →

∆
∆

= 
1

1

U F∂
∂δ

= (5.27)

This is the theorem of virtual work. Note that in this case, the strain energy must
be expressed in terms of d1, d2, . . ., etc. whereas in the application of Castigliano's
theorem U had to be expressed in terms of F1, F2, . . ., etc.

It is important to observe that in obtaining the above equation, we have not
assumed that the material is linearly elastic, i.e. that it obeys Hooke's law. The
theorem is applicable to any elastic body, linear or nonlinear, whereas Castigliano's
first theorem, as derived in Eq. (5.16), is strictly applicable to linear elastic or
Hookean materials. This aspect will be discussed further in Sec. 5.15.

Example 5.14 Three elastic members AD, BD and CD are connected by smooth
pins, as shown in Fig. 5.22. All the members have the same cross-sectional
areas and are of the same material. BD is 100 cm long and members AD and CD
are each 200 cm long. What is the deflection of D under load W?

Solution Under the action of load W, it is possible for D to move vertically and
horizontally. If d1 and d2 are the vertical and horizontal displacements, then
according to the principle of virtual work.

1

U∂
∂δ

= 
2

, 0UW ∂
∂δ

=

where U is the total strain energy of the system.
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Becacse of d1, BD will not undergo any changes in length but AD will extend by
d1 cosq and CD will contract by the same amount, From Fig. (a),

cos q = 3
2

Because of d2, BD will extend by d2 and AD and CD each will extend by 1
2 d2.

Hence, the total extension of each member is

 AD extends by ( )1 2
1 3
2

δ δ+  cm

BD extends by d2 cm

CD extends by ( )1 2
1 3
2

δ δ− + cm

To calculate the strain energy, one needs to know the force-deformation equation
for the non-Hookean members. This aspect will be taken up in Sec. 5.17, and
Example 5.17. For the present example, assuming Hooke's law, the forces in the
members are (with d as corresponding extensions)

in AD: aE
L
δ = ( )1 2

1 13
2 200

aE δ δ+

in BD : 
aE

L
δ = 2

1
100

aEδ

in CD : 
aE

L
δ = ( )1 2

1 13
2 200

aE δ δ− +

The total elastic strain energy taking only axial forces into account is

U = ( )
2 2 2

1 2 2
1 13

2 2 800 100
P L aE
aE

δ δ δ⎡Σ = + +⎢⎣

+ ( )2
1 2

1 3
800

δ δ ⎤− + ⎥⎦

( )2 2
1 2

3 1
800 160

aE δ δ= +

\ W = 1
1

3
400

U aE∂ δ
∂δ

=

B

C

D

q

W
d 1

d 2

A

D

q

d 1

d1 cos q

d2 sin q

(a) ( b ) (c) ( d )

Fig. 5.22 Example 5.14

A
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and 0 =  2
2 80

U aE∂ δ
∂δ

=

Hence, d2 is zero, which means that D moves only vertically under W and the
value of this vertical deflection d1 is

d1 = 400
3

W
aE

5.15 KIRCHHOFF'S THEOREM
In this section, we shall prove an important theorem dealing with the uniqueness of
solution. First, we observe that the applied forces taken as a whole work on the body
upon which they act. This means that some of the products Fn dn etc. may be negative
but the sum of these products taken as a whole is positive. When the body is elastic,
this work is stored as elastic strain energy. This amounts to the statement that U is an
essentially positive quantity. If this were not so, it would have been possible to extract
energy by applying an appropriate system of forces. Hence, every portion of the body
must store positive energy or no energy at all. Accordingly, U will vanish only when
every part of the body is undeformed. On the basis of this and the superposition
principle, we can prove Kirchhoff's uniqueness theorem, which states the following:

An elastic body for which displacements are specified at some points and
forces at others, will have a unique equilibrium configuration.

Let the specified displacements be d1, d2, . . ., dr and the specified forces be Fs,
Ft, . . .,Fn. It is necessary to observe that it is not possible to prescribe simulta-
neously both force and displacement for one and the same point. Consequently,
at those points where displacements are prescribed, the corresponding forces are

1F ′, 2F ′ , . . ., rF ′  and at those points where forces are prescribed, the correspond-
ing displacement are sδ ′ , tδ ′ , . . ., nδ ′ . Let this be the equilibrium configuration. If
this system is not unique, then there should be another equilibrium configuration
in which the forces corresponding to the displacements d1, d2, . . . , dr have the
values 1F ′′, 2F ′′, . . ., rF ′′ and the displacements corresponding to the forces Fs, Ft,
. . . , Fn have the values sδ ′′, tδ ′′, . . ., nδ ′′. We therefore have two distinct systems.

First System Forces 1F ′, 2F ′ , . . ., rF ′ , Fs, Ft, . . ., Fn

Corresponding d1, d2, . . ., dr sδ ′ , tδ ′ , . . ., nδ ′
displacements

Second System Forces 1F ′′, 2F ′′, . . ., rF ′′ Fs, Ft, . . ., Fn

Corresponding
displacements d1, d2, . . ., dr sδ ′′, tδ ′′, . . ., nδ ′′

We have assumed that these are possible equilibrium configurations. Hence, by
the principle of superposition the difference between these two systems must
also be an equilibrium configuration. Subtracting the second system from the first,
we get the third equilibrium configuration as
Forces ( ) ( ) ( )1 1 2 2, , . . . , ;r rF F F F F F′ ′′ ′ ′′ ′ ′′− − − 0,  0, º,  0

Corresponding
displacements 0, 0 º,  0 ( ),s sδ δ′ ′′− ( ),t tδ δ′ ′′− º, ( )n nδ δ′ ′′−
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The strain energy corresponding to the third system is U = 0. Consequently the
body remains completely undeformed. This means that the first and second
systems are identical, i.e. there is a unique equilibrium configuration.

5.16 SECOND THEOREM OF CASTIGLIANO
OR MENABREA'S THEOREM

This theorem is of great importance in the solution of redundant structures or
frames. Let a framework consist of m number of members and j number of joints.
Then, if

M > 3j - 6

the frame is termed a redundant frame. The reason is as follows. For each joint,
we can write three force equilibrium equations (in a general three-dimensional
case), thus giving a total of 3j number of equations. However, all these equation
are not independent, since all the external forces by themselves are in
equilibrium and, therefore, satisfy the three force equilibrium equations and
the three moment equilibrium equations. Hence, the number of independent
equations are 3j - 6 and if the number of members exceed 3j - 6, the frame is
redundant. The number

N = m - 3j + 6
is termed the order of redundancy of the framework. If the skeleton diagram lies
wholly in one plane, the framework is termed a plane frame. For a plane framework,
the degree of redundancy is given by the number

N = m - 2j + 3
Castigliano's second theorem (also known as Menabrea's theorem) can be stated
as follows:

The forces developed in a redundant framework are such that the total elastic
strain energy is a minimum.

Thus, if F1, F2 and Fr are the forces in the redundant members of a framework
and U is the elastic strain energy, then

1

U
F

∂
∂ = 

2
0, 0, . . . , 0

r

U U
F F

∂ ∂
∂ ∂

= =

This is also called the principle of least work and can be proven as follows:
Let r be the number of redundant members. Remove the latter and replace their

actions by their respective forces, as shown in Fig. 5.23(b). Assuming that the
values of these redundant forces F1, F2, . . ., Fr are known, the framework will
have become statically determinate and the elastic strain energy of the remaining
members can be determined. Let Us be the strain energy of these members. Then
by Castigliano's first theorem, the 'increase' in the distance between the joints a
and b is given as

abδ ′ = s

i

U
F

∂
∂

− (5.28)
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The negative appears because of the direction of Fi. The reactive force on the
redundant members ab being Fi, its length will increase by

dab = i i

i i

F l
A E

(5.29)

where li is the length and Ai is the sectional area of the member. The increase in
the distance given by Eq. (5.28) must be equal to the increase in the length of the
member ab, given by Eq. (5.29). Hence

s

i

U
F

∂
∂

− = i i

i i

F l
A E

(5.30)

The elastic strain energies of the redundant members are

U1 = 
2 2 2

1 2 2
2

1 1 2 2
, , . . . ,

2 2 2
l r r

r
r r

F l F l F l
U U

A E A E A E
= =

Hence, the total elastic energy of all redundant members is

U1 + U2 + . . . Ur = 

2 2 2
1 2 2

1 1 2 2
. . .

2 2 2
l r r

r r

F l F l F l
A E A E A E

+ + +

\ ( )1 2 . . . i i
r

i i i

F l
U U U

F A E
∂
∂

+ + + =

since all terms, other than the ith term on the right-hand side, will vanish when
differentiated with respect to Fi. Substituting this in Eq. (5.30)

( )1 2 . . . 0s
r

i i

U
U U U

F F
∂ ∂
∂ ∂

− = + + + =

or ( )1 2 . . . 0r s
i

U U U U
F
∂
∂

+ + + + =

The sum of the terms inside the parentheses is the total energy of the entire
framework including the redundant members. If U is this total energy

i

U
F

∂
∂

= 0

Pi
b

a

Pi b

Fi

Fi

a

Fig. 5.23 (a) Redundant structure (b) Structure with redundant member removed

(a) ( b )
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Similarly, by considering the redundant members one-by-one, we get

1

U
F

∂
∂

= 
2

0, 0, . . . , 0
r

U U
F F

∂ ∂
∂ ∂

= = (5.31)

This is the principle of least work.

Example 5.15 The framework shown in Fig. 5.24 contains a redundant bar. All
the members are of the same section and material. Determine the force in the
horizontal redundant member.

Solution Let T be the tension in the mem-
ber AB. The forces in the members are

Members Length Force

AB 2 3 h +T
AC, BD h 3T P−

AF, BF 2h 2 3 0T− +

CF, DF 3 h 3T P− +

CE, DE 2h 2 3 2T P−

FE h 2 3 0T− +
The total strain energy is

U = 
2 2

2 2 2 162 3 2
2 3 33

h T PT TT P
EA

⎡ ⎛ ⎞
+ + − +⎢ ⎜ ⎟

⎝ ⎠⎣

+ ( )2 22 3 3 2 3T P PT+ −

+ 
2 2

2 2 416
3 33

T PT TP
⎤⎛ ⎞

+ − + ⎥⎜ ⎟
⎝ ⎠ ⎦

The condition for minimum strain energy or least work is

0U
T

∂
∂

=  =  4 4 324 3 4 3
2 3 33

h T P TT T
EA

⎡
+ − + +⎢

⎣

- 32 32 812
3 33
T TP P ⎤

+ − + ⎥
⎦

\ ( )4 32 32 8 4 324 3 4 3 12
3 3 3 3 3 3

T P ⎛ ⎞
+ + + + + = + +⎜ ⎟

⎝ ⎠

or T = 
( )9 3 1

6 3 19
P

+

+

2P
E

C

A
P

D
F

B
P

60°6 0 °

Fig. 5.24 Example 5.15

60° 6 0 ° h
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Example 5.16 A cantilever is supported at the free end by an elastic spring
of spring constant k. Determine the reaction at A (Fig. 5.25). The cantilever beam

is uniformly loaded. The intensity of
loading is W.

Solution Let R be the unknown reac-
tion at A, i.e. R is the force on the spring.
The strain energy in the spring is

A

Fig. 5.25 Example 5.16

W

U1 = 
21 1

2 2 2
R RR R
k k

δ = =

where d is the deflection of the spring. The strain energy in the beam is

U2 =
2

0 2
L M dx

EI∫

( )22

0

2
2

L Rx wx dx
EI

−
= ∫

( )2 3 2 5 41 1 1 1
6 40 8

R L w L RwL
EI

= + −

Hence, the total strain energy for the system is

U = ( )2
2 3 2 5 4

1 2
1 1 1 1

2 6 40 8
RU U R L w L RwL

k EI
+ = + + −

From Castigliano's second theorem

U
R

∂
∂

= ( )3 41 1 1 0
3 8

R RL wL
k EI
+ − =

\ R = ( )
4

3
3

8 3
kwL

EI kL+

5.17 GENERALISATION OF CASTIGLIANO'S THEOREM
  OR ENGESSER'S THEOREM

It is necessary to observe that in developing the first and second theorems of
Castigliano, we have explicitly assumed that the elastic body satisfies Hooke's
law, i.e. the body is linearly elastic. However, situations exist where the defor-
mation is not proportional to load, though the body may be elastic. Consider the
spring showns in Fig. 5.26(a), whose load-displacement curve is as given in
Fig. 5.26(b).

The spring is a non-linear spring. Consider the area of OBC which is the strain
energy. It is represented by

U  = 
0

x
F dx∫ (5.32)
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Fig. 5.26 (a) Non-linear spring; (b) Non-
 linear load-displacement curve

F

F

A B

CO X

DF

Dx
( b )(a)

Hence   dU
dx

 = F

This is the principle of virtual
work, discussed in Sec. 5.14, and
is applicable whether the elastic
member is linear or non-linear.
Now consider the area OAB. It is
represented by

U* = 
0

F
x dF∫ (5.33)

This is termed as a complementary
energy. Differentiating the comple-
mentary energy with respect to F
yields

*dU
dF

= x (5.34)

This gives the deflection in the direction of F. If we compare with Castigliano's
first theorem (Eq. 5.16), we notice that to obtain the corresponding deflection, we
must take the derivative of the complementary energy and not that of the strain
energy. When a material obeys Hooke's law, the curve OB is a straight line and
consequently, the strain energy and the complementary strain energy are equal
and it becomes immaterial which one we use in Castigliano's first theorem. The
expression given by Eq. (5.34) represents Engesser's theorem.

Consider as an example an elastic spring the force deflection characteristic of
which is represented by

  F = axn

where a and n are constants.
The strain energy is

U = ( ) 1

0 0

1
1

x x n nF dx a x dx axn
+= =′ ′

+∫ ∫

The complimentary strain energy is

U* = ( )1/

0 0

nF F Fx dF dFa=∫ ∫

( )1 1/
1/
1

1
n

n
n Fna

+= ⋅
+

From these dU
dx

= axn = F

*dU
dF

= 1/
1/
1 n

n F x
a

⋅ =

Further, expressing U in terms of F, we get

U = 
1

1/
1/

1 1
1

n
n

na Fn a

+
⎡ ⎤⋅ ⋅⎢ ⎥+ ⎣ ⎦
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\ dU
dF

= ( )1/1 1nF x
n a n

=

and this does not agree with the correct result. Hence the principle of virtual
work is valid both for linear and non-linear elastic material, whereas to obtain
deflection using Castigliano's first theorem, we have to use the complementary
energy U* if the material is non-linear. If it is linearly elastic, it is immaterial
wheather we use U or U*, since both are equal.

Example 5.17 Consider Fig. 5.27, which shows two identical bars hinged together,
carrying a load W. Check Castigliano's first theorem, using the elastic and comple-
mentary strain energy.

Solution When C has displacement CC1 = d, we have from the figure for small a,

tan α sin /lα δ≈ ≈

If F is the force in each member, a the cross-sectional area and e the strain, then

F = 
2 sin 2

W Wl
α δ
≈

and e = 
2 2 2

2
1
2

l l
l l
δ δ+ −

≈

Also e = 
2

F Wl
aE aEδ

=

Equating the two strains

2
Wl

aEδ
= 

2

22l
δ

or d = ( )1/3Wl
Ea

i.e. the deflection is not linearly related to the load.
The strain energy is

U = 
( )

4/3

1/3
0

lWWd
aE

δ
δ =∫

C
l l

B

a

W

A

C1

Fig. 5.27 Example 5.17

d
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\ U
W
∂
∂

= 
( )

1/3

1/3
4

3
lW
aE

Hence, Castigliano's first theorem applied to the strain energy, does not yield the
deflection d. This is so because the load defection equation is not linearly related.
If we consider the complementary energy,

U* = 
( )

1/3
1/3

0 0

w wldW W dW
Ea

δ =∫ ∫

( )
4/3

1/3
3

4
lW
Ea

=

*U
W

∂
∂ =  ( )1/3Wl

Ea
δ=

Hence, Engesser's theorem gives the correct result.

5.18 MAXWELL–MOHR INTEGRALS
Castigliano's first theorem gives the displacement of points in the directions of
the external forces where they are acting. When a displacement is required at a

point where no external force is acting, a
fictitious force in the direction of the re-
quired displacement is assumed at the
point, and in the final result, the value
of the fictitious load is considered equal
to zero. This technique was discussed
in Sec. 5.11. In this section, we shall de-
velop certain integrals, which are based
on the fictitious load techniques.

Consider the determination of the ver-
tical displacement of point A of a struc-
ture which is loaded by a force P, as
shown in Fig. 5.28. Since no external force
is acting at A in the corresponding direc-
tion, we apply a fictitious force Q in the
corresponding direction at A. In order to
calculate the strain energy in the elastic
member, we need to determine the
moments and forces across a general
section. This is shown in Fig. 5.29.

At any section, the moments and
forces of reaction are caused by the
actual external forces plus the fictitious
load Q. For example, about the x axis we
have

FX = FxP + FxQ,

MX = MxP + MxQ

A

Q
P

Fig. 5.28 A general structure under
load P

My

Fy

Fx

MxFz

Mz

Fig. 5.29 Moments and forces across
a general section
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where FxP is caused by the actual external forces, such as P, and FxQ is due to the
fictitious load Q. It is essential to observe that the additional force factors, such
as FxQ, MxQ, etc. are directly proportional to Q. If Q is doubled, these factors also
get doubled. Hence, one can write these as Fx1Q, Mx1Q, etc. where Fx1, Mx1, etc.
are the force factors caused by a unit fictitious generalised force. Consequently,
the force factors due to the actual loads and fictitious force are

Fx = FxP + Fx1Q, Mx = MxP + Mx1Q
Fy = FyP + Fy1Q, My = MyP + My1Q (5.35)
Fz = FzP + Fz1Q, Mz = MzP + Mz1Q

Note that in Fig. 5.29 while Mx acts as a torque, My and Mz act as bending
moments. These force factors vary from section to section. The total elastic
energy is

U = ( ) ( )22
11

2 2
yP yxP x

x yl l

M M Q dsM M Q ds
GI EI

++
+∫ ∫

( ) ( )22
11

2 2
xP xzP z

zl l

F F Q dsM M Q ds
El EA

++
+ +∫ ∫

( ) ( )
2 2

1 1

2 2
y yP y z zP z

l l

k F F Q ds k F F Q ds
GA GA
+ +

+ +∫ ∫

Differentiating the above expression with respect to Q and putting Q = 0

  
0

A
Q

U
Q

∂δ
∂ =

= 11 yP yxP x

x yl l

M M dsM M ds
GI EI= +∫ ∫

11 xP xzP z

zl l

F F dsM M ds
EI EA+ +∫ ∫

1 1y yP y z zP z

l l

k F F ds k F F ds
GA GA+ +∫ ∫ (5.36)

If the fictitious force Q is replaced by a fictitious moment or torque, we get the
corresponding deflection qA.

These sets of integrals are known as Maxwell-Mohr integrals. The above
method is sometimes known as the unit load method. These integrals can be used
to solve not only problems of finding displacements but also to solve problems
connected with plane thin-walled rings. The above set of equations is generally
written as

dA = y yx x z z

x y zl l l

M MM M M M
ds ds dsGI EI EI+ +∫ ∫ ∫

+ y y yx x z z z

l l l

k F FF F k F F
ds ds ds

EA GA GA
+ +∫ ∫ ∫ (5.37)
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where xM , yM ,. . . , zM  are the force factors caused by a generalised unit ficti-
tious force applied where the appropriate displacement is needed.

Example 5.18 Determine by what amount the straight portions of the ring are
bought closer together when it is loaded, as shown in Fig. 5.30 consider only the
bending energy.

Solution Consider one quarter of
the ring. The unknown moment
M1 is the redundant unknown
generalised force. Owing to symme-
try, there is no rotation of the sec-
tion at point A. To determine the
rotation, we assume a unit moment in
the same direction as M1. The mo-
ment due to this fictitious unit
moment at any section is M .

M at any section in quadrant =
aq . a (1 - cos f) - M1

M  at any section in quadrant = -1
M at any section in the top  
horizontal member = aq  (a + x)
- qx 2/2 - M1

M  at any section in the top
horizontal member = -1

\ qA = ( ) ( )2 2/ 2
1 1

0 0

1 cos /2aa q M a q a x qx M
ad dxEI EI

π φ
φ

− − + + − −
−∫ ∫

or EIqA = ( ) ( )3
1

1 1 0
2 3 2

a q M aπ π− + + + =

\ M1 = 
( )

2 23 2 0.74
3 2

a q a qπ
π
+

≈
+

This is the value of the redundant unknown moment. To determine the vertical
displacements of the midpoints of the horizontal members, we apply a fictitious
force Pf = 1 in an upward direction at point A of the quarter ring. Because of this

M  at any section in quadrant = -a (1 - cos f)
M  at any section in top horizontal part = - (a + x)

Hence, the vertically upward displacement of point A is

dA = ( ) ( )4/ 2

0

1 cos 0.74 1 cosa q
d

EI

π φ φ
φ

− − −
−∫

+ 
( ) ( )2 2

0

1 0.742a aq a x qx a q a x
dx

EI

⎡ ⎤+ − − +⎢ ⎥⎣ ⎦−∫

y
a a

A a B

x

q

A
M1 f

q

x

aq

Fig. 5.30 Example 5.18
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40.86 a q

EI
=

Hence, the two horizontal members approach each other by a distance equal to
4 42 (0.86) 1.72a q a q

EI EI=

Example 5.19 A thin walled circular ring is loaded as shown in Fig. 5.31. Determine
the vertical displacement of point A. Take only the bending energy.

Solution Because of symmetry, we may consider one half of the ring. The reac-
tive forces at section A are F1 and M1. Because of symmetry, section A does not
rotate and also does not have a horizontal displacement. Hence in addition to M1
and F1, we assume a fictitious moment and a fictitious horizontal force, each of
unit magnitude at section A.
The moment at any section f due to the distributed loading q is

Mq = 2

0
(sin sin ) ( sin cos 1)qr d r qr

φ
θ φ θ φ φ φ− = + −∫

M at any section f with distributed loading F1 and M1 is
M = qr2 (f sinf + cosf - 1) + M1 + F1r (1 - cosf)

A

B

(a)

r

q

qr dq
F1

A

M1

B

q

( b ) (c)

q
f

Fig. 5.31 Example 5.19

y
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DO
q

Vertical Load W y

xA

Fig. 5.32 Example 5.20

M at any section f due to the unit fictitious horizontal force is
M = r (1 - cos f)

\ dA = ( )2 2

0
sin cos 1I r qr

EI
π

φ φ φ⎡ + −⎣∫

+ ( ) ( )1 1 1 cos 1 cosM F r dφ φ φ+ − −⎤⎦

( )2
2

1 1
3

4 2I

r qr M F rE
π ππ= − + +

Since this is equal to zero, we have

1 1
3
2

M F r+ = 21
4

qr (5.38)

M  at any section f due to unit fictitious moment is
M = 1

\ qA =  ( ) ( )2
1 1

0
sin cos 1 1 cosI r qr M F r d

EI
π

φ φ φ φ φ⎡ ⎤+ − + + −⎣ ⎦∫

( )1 1
r M F r

EI
π π= +

Since this is also equal to zero, we have
M1 + F1r = 0 (5.39)

Solving Eqs (5.38) and (5.39)

M1 = 
2

1and
2 2

qr qrF− =

To determine the vertical displacement of A we apply a fictitious unit force Pf = 1
at A in the downward direction.

M  at any section f due to Pf = 1 is r sinf

\ dv = ( ) ( )2 2
1 1

0
sin cos 1 1 cos sinr qr M F r d

π
φ φ φ φ φ φ⎡ + − + + − ⎤⎦⎣∫

4 42
2 0.467

4
qr qr
EI EI

π⎛ ⎞
= − ≈⎜ ⎟
⎝ ⎠

a

C

Example 5.20 Figure 5.32 shows a cir-
cular member in its plan view. It carries
a vertical load W at A perpendicular to
the plane of the paper. Taking only
bendng and torsional energies into ac-
count, determine the vertical deflection
of the loaded end A. The radius of the
member is R and the member subtends an
angle a at the centre.



Energy Methods 181

Solution At section C, the moment of the force about x axis acts as bendng
moment M and the moment about y axis acts as torque T. Hence,

M = W ¥ AD = WR sinq
T = W ¥ DC = WR (1 - cosq)

\ U = ( ) ( ) 22

0 0

1 1sin 1 cos
2 2

WR R d WR R dEI GJ
α α

θ θ θ θ+ −⎡ ⎤⎣ ⎦∫ ∫

When the load W is gradually applied, the work done by W during its vertical

deflection is 1
2

 W dV and this is stored as the elastic energy U. Thus,

1
2

WdV = ( ) ( ) 22

0 0

1 1sin 1 cos
2 2

U WR R d WR R dEI GJ
α α

θ θ θ θ= + −⎡ ⎤⎣ ⎦∫ ∫

or dV = ( ) ( )3 1 1 1 3 1sin 2 sin 2 2 sin
2 2 2 4

WR
EI GJ

α α α α α⎡ ⎤− + + −⎢ ⎥⎣ ⎦
This is the same as ∂U/∂W.

if a = 3 3 81,
2 4 4V WR

EI GJ
ππ πδ ⎡ − ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

if   a = ( )3 1 3, V WR
EI GJ

π δ π= −

5.1 A load P = 6000 N acting at point R of a beam shown in Fig. 5.33 produces
vertical deflections at three points A, B, and C of the beam as

dA = 3 cm dB = 8 cm dC = 5 cm
Find the deflection of point R when the beam is loaded at points, A, B and C by

PA = 7500 N, PB = 3500 N and PC = 5000 N.
[Ans. 12.6 cm (approx.)]

Fig. 5.33 Problem 5.1

P

A BR C

Fig. 5.34 Problem 5.2

B C D

60 cm30 cm30 cm

A

5.2 For the horizontal beam shown in Fig. 5.34, a vertical displacement of 0.6 cm of
support B causes a reaction Ra = 10,000 N at A. Determine the reaction Rb at B
due to a vertical displacement of 0.8 cm at support A. [Ans. Rb = 13,333 N]

Chapter_05.pmd 7/3/2008, 5:51 AM181
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A
M

B

Fig. 5.37 Problem 5.5

C

l /2

5.3 A closed circular ring made of inextensible material is subjected to an
arbitrary system of forces in its plane. Show that the area enclosed by the
frame does not change under this loading. Assume small displacements
(Fig. 5.35).

⎡
⎢
⎢
⎣

Hint: Subject the ring to uniform internal pressure. Since
the material is inextensible, no deformation occurs.

Now apply the reciprocal theorem.

⎡
⎢
⎢
⎣

F1

F2

F4

F3

Fig. 5.35 Problem 5.3

5.4 Determine the vertical displacement of point A for the structure shown in
Fig. 5.36. All members have the same cross-section and the same rigidity
EA. ( ). 7 4 2A

WlAns EAδ⎡ ⎤= +⎢ ⎥⎣ ⎦

A

W

l l

l

Fig. 5.36 Problem 5.4

5.5 Determine the rotation of point C of the beam under the action of a couple
M applied at its centre (Fig. 5.37).

. 12
M lAns EIθ⎡ ⎤=⎢ ⎥⎣ ⎦
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5.6 What is the relative displacement of points A and B in the framework shown?

Consider only bending energy (Fig. 5.38).
3 2

. 6 2AB
Pa Pa bAns EI EIδ⎡ ⎤

= +⎢ ⎥⎣ ⎦

5.7 What is the relative displacement of points A and B when subjected to
forces P. Consider only bending energy (Fig. 5.39).

3
. 3AB

PRAns
EI

δ π⎡ ⎤
=⎢ ⎥⎣ ⎦

5.8 Determine the vertical displacement of the point of application of force P.
Take all energies into account. The member is of uniform circular cross-
section (Fig. 5.40).

3 2 3
. 2

3 2 2 2A
P

a a b a ka bAns P
EI EI GI AG AE

δ
⎡ ⎤⎛ ⎞

= + + + +⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

Fig. 5.38 Problem 5.6

P

B

A a /2

b

a

P

Fig. 5.39 Problem 5.7

r

A B
P P

Fig. 5.40 Problem 5.8

P

a

b a
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5.9 What are the horizontal and vertical displacements of point A in
Fig. 5.41. Assume AB to be rigid.

17 1.73. ;V H
Ph PhAns

EA EA
δ δ⎡ ⎤= =⎢ ⎥⎣ ⎦

5.10 Determine the vertical displacement of point B under the action of W. End B
is free to rotate but can move only in a vertical direction (Fig. 5.42).

3 3 1.
4 9 8B

WaAns
EI

πδ
π

⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

3 0 ∞ 3 0 ∞

P
a a a

A

Fig. 5.41 Problem 5.9

Fig. 5.42 Problem 5.10

D

CA

B

a

W

5.11 Two conditions must be satisfied by an ideal piston ring. (a) It should be
truly circular when in the cylinder, and (b) it should exert a uniform pressure
all around. Assuming that these conditions are satisfied by specifying
the initial shape and the cross-section, show that the initial gap width must be
3ppr4/EI, if the ring is closed inside the cylinder. p is the uniform pressure
per centimetre of circumference. EI is kept constant.

5.12 For the torque measuring device shown in Fig. 5.43 determine the stiffness
of the system, i.e. the torque per unit angle of twist of the shaft. Each of the springs
has a length l and moment of inertia I for bending in the plane of the
moment. 8. M EIAns

lθ
⎡ ⎤≈⎢ ⎥⎣ ⎦

h

h

B
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5.13 A circular steel hoop of square cross-section is used as the controlling
element of a high speed governor (Fig. 5.44). Show that the vertical deflec-
tion caused by angular velocity w is given by

d = 
2 5

2
2 r
E t
ρ ω

where r is the hoop radius, t the thickness of the section and r the weight
density of the material.

d t

w

Fig. 5.44 Problem 5.13
Free to Slide

P

P P

2 a

Fig. 5.45 Problem 5.14

R

M

l

Fig. 5.43 Problem 5.12

5.14 A thin circular ring is loaded by three forces P as shown in Fig. 5.45. Deter-
mine the changes in the radius of the ring along the line of action of the
forces. The included angle between any two forces is 2a and A is the cross-
sectional area of the member. Consider both bending and axial energies.

3

2 2
1. cot cot2 2 42 sin sin

PR PRAns EI EA
α α αα

αα α

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
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w/unit length

BA
C

h

D

ll

Fig. 5.47 Problem 5.17

h

 5.15 For the system shown (Fig. 5.46) determine the load W necessary to cause a
displacement d in the vertical direction of point O. a is the cross-sectional
area of each member and l is the length of each member. Use the principle
of virtual work.

3. 2
aEAns W l

δ⎡ ⎤=⎢ ⎥⎣ ⎦

5.16 In the previous problem determine the force in the member OC by
Castigliano's second theorem. [Ans. 2W/3]

5.17 Using Castigliano's second theorem, determine the reaction of the vertical
support C of the structure shown (Fig. 5.47). Beam ACB has Young's modu-
lus E and member CD has a value E '. The cross-sectional area of CD is a.

( )
4

3
5.

4 6
wl aEAns

EIh qE l
⎡ ⎤′
⎢ ⎥

+ ′⎢ ⎥⎣ ⎦

A W B

C

O

Fig. 5.46 Problem 5.15

5.18 A pin jointed framework is supported at A and D and it carries equal loads
W at E and F. The lengths of the members are as follows:

AE = EF = FD = BC = a
BE = CF = h
BF = CE = AB = CD = l = (a2 + h2)1/2

The cross-sectional areas of BF and CE are A1 each, and of all the other
members are A2 each. Determine the tensions in BF and CE.

( )
2

1
3 3 3

1 2

.
WA lh

Ans
A a h A l

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥⎣ ⎦
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5.19 A ring is made up of two semi-circles of radius a and of two straight
lines of length 2a, as shown in Fig. 5.49. When loaded as shown, deter-
mine the change in distance between A and B. Consider only bending
energy.

( )
2 46 17 6.

12 2
qaAns
EI

π π
π

⎡ ⎤− −
⋅⎢ ⎥+⎣ ⎦

5.20 Determine reaction forces and moments at the fixed ends and also the verti-
cal deflection of the point of loading. Assume G = 0.4E (Fig. 5.50).

3

. ; 0.3872

0.711

PaAns M T Pa

Pa
EIδ

⎡ ⎤= =⎢ ⎥
⎢ ⎥

=⎢ ⎥⎣ ⎦

A B

a

q

a

a

Fig. 5.49 Problem 5.19 Fig. 5.50 Problem 5.20

p

aa

a

a

Fig 5.48 Problem 5.18

A

B C

E F
D

W W

5.21 A semi-circular member shown in Fig. 5.51 is subjected to a torque T at A.
Determine the reactive moments at the built-in ends B and C. Also deter-
mine the vertical deflection of A.

( )2

. ; Torque
2 9

9 1 5
8 4V

T TAns M

R T
EI

π
πδ

π

⎡ ⎤= = −⎢ ⎥
⎢ ⎥

= + −⎢ ⎥
⎣ ⎦
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C

B

T

Fig. 5.51 Problem 5.21

R

A

5.22  In Example 5.12 determine the change in the horizontal diameter

( )3 2 1. 2h
PrAns EIδ π

⎡ ⎤
= − −⎢ ⎥⎣ ⎦



6.1 INTRODUCTION
In this chapter we shall consider the stresses in and deflections of beams having
a general cross-section subjected to bending. In general, the moments causing
bending are due to lateral forces acting on the beams. These lateral forces, in
addition to causing bending or flexural stresses in transverse sections of the
beams, also induce shear stresses.

Flexural stresses are normal to the section. The effects of transverse shear
stresses will be discussed in Sec. 6.4-6.6. Because of pure bending moments, only
normal stresses are induced. In elementary strength of materials only beams hav-
ing an axis of symmetry are usually considered. Figure 6.1 shows an initially
straight beam having a vertical section of symmetry and subjected to a bending
moment acting in this plane of symmetry.

Mz

z Mz

y

x

Fig. 6.1 Beam with a vertical section of symmetry subjected to bending

The plane of symmetry is the xy plane and the bending moment Mz acts in this
plane. Owing to symmetry the beam bends in the xy plane. Assuming that the
sections that are plane before bending remain so after bending, the flexural stress
sx is obtained in elementary strength of materials as

sx = - M y
I

z

z
(6.1)

The origin of the co-ordinates coincides with the centroid of the cross-section
and the z axis coincides with the neutral axis. The minus sign is to take care of the

Bending of Beams 6
CHAPTER
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sign of the stress. A positive bending moment Mz, as shown, produces a com-
pressive stress at a point with the positive y co-ordinate. Iz is the area moment of
inertia about the neutral axis which passes through the centroid. Further, if E is
the Young's modulus of the beam material and R the radius of curvature of the
bent beam, the equations from elementary strength of materials give,

xz

z

M E
I y R

σ
= − = (6.2)

The above set of equation is usually called Euler-Bernoulli equations or Navier-
Bernoulli equations.

6.2 STRAIGHT BEAMS AND ASYMMETRICAL BENDING
Now we shall consider the bending of initially straight beams having a uniform
cross-section. There are three general methods of solving this problem. We shall
consider each one separately. When the bending moment acts in the plane of
symmetry, the beam is said to be under symmetrical bending. Otherwise it is said
to be under asymmetrical bending.

Method 1 Figure 6.2 shows a beam subjected to a pure bending moment Mz
lying in the xy plane. The moment is shown vectorially. The origin O is taken at
the centroid of the cross-section. The x axis is along the axis of the beam and the
z axis is chosen to coincide with the moment vector. It is once again assumed that
sections that are plane before bending remain plane after bending. This is usually
known as the Euler-Bernoulli hypothesis. This means that the cross-section will
rotate about an axis such that one part of the section will be subjected to tensile
stresses and the other part above this axis will be subjected to compression.
Points lying on this axis will not experience any stress and consequently this axis
is the neutral axis. In Fig. 6.2(b) this is represented by BB and it can be shown
that it passes through the centroid O. For this, consider a small area DA lying at a
distance y¢ from BB. Since the cross-section rotates about BB during bending, the
stretch or contraction of any fibre will be proportional to the perpendicular dis-
tance from BB, Hence, the strain in any fibre is

ex = k¢y¢

y

z

Mz

x

DA

B
y ¢

b

BO

Fig. 6.2 Beam with a general section subjected to bending

( a ) ( b )

z Mz

y
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where k¢ is some constant. Assuming only sx to be acting and sy = sz = 0, from
Hooke's law,

sx = k¢Ey¢ = k y¢ (6.3)
where k is an appropriate constant. The force acting on DA is therefore,

DFx = ky¢ D A
For equilibrium, the resultant normal force acting over the cross-section must be
equal to zero. Hence, integrating the above equation over the area of the section,

k y dA′∫∫ = 0 (6.4)

The above equation shows that the first moment of the area about BB is zero,
which means that BB is a centroidal axis.

It is important to observe that the beam in general will not bend in the plane of
the bending moment and the neutral axis BB will not be along the applied moment
vector Mz. The neutral axis BB in general will be inclined at an angle b to the y
axis. Next, we take moments of the normal stress distribution about the y and z
axes. The moment about the y axis must vanish and the moment about the z axis
should be equal to -Mz. The minus sign is because a positive stress at a positive
(y, z) point produces a moment vector in the negative z direction. Hence

x z dAσ∫∫ = ky z dA′∫∫  = 0 (6.5a)

∫∫sx y dA = ∫∫ ky¢y dA = -Mz (6.5b)

y¢ can now be expressed in terms of y and z
coordinates (Fig. 6.3) as

y¢= CF - DF
   = y sin b - z cos b

Substituting this in Eqs (6.5)

 k ∫∫ ( yz sin b - z2 cos b ) dA = 0

and k ∫∫ ( y2 sin b - yz cos b ) dA = -Mz

i.e. Iyz sin b - Iy cos b = 0 (6.6a)

and k (Iyz cos b - Iz sin b ) = Mz (6.6b)
From the first equation

tanb = y

yz

I
I

(6.7)

This gives the location of the neutral axis BB.
Substituting for k from Eq. (6.6b) in Eq. (6.3)

sx = ( )sin cos
cos sin

z

yz z

M y z
I I

β β
β β

−
−

= tan
tan z

yz z

y z M
I I

β
β

−
−

y

C z

y ¢

DB

F

z

b

z cos b
B

Fig. 6.3 Location of neutral
axis and distance y ¢ of
point C from it

y
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Substituting for tan b from Eq. (6.7),

sx = 
2

y yz
z

yz y z

yI zI
M

I I I

−

−
(6.8)

The above equation helps us to calculate the normal stress due to bending. In
summary, we conclude that when a beam with a general cross-section is sub-
jected to a pure bending moment Mz, the beam bends in a plane which in general
does not coincide with the plane of the moment. The neutral axis is inclined at
an angle b to the y axis such that tan b = Iy /Iyz. The stress at any point (y, z) is
given by Eq. (6.8).

Method 2 we observe from Eq. (6.7) that b = 90° when Iyz = 0, i.e. if the y and
z axes happen to be the principal axes of the cross-section. This means that if the
y and z axes are the principal axes and the bending moment acts in the xy plane
(i.e. the moment vector Mz is along one of the principal axes), the beam bends in
the plane of the moment with the neutral axis coinciding with the z axis. Equation
(6.8) then reduces to

sx = - z

z

M y
I

This is similar to the elementary flexure formula which is valid for symmetrical
bending. This is so because for a symmetrical section, the principal axes coincide
with the axes of symmetry. So, an alternative method of solving the problem is to
determine the principal axes of the section; next, to resolve the bending moment
into components along these axes, and then to apply the elementary flexure for-
mula. This procedure is shown in Fig. 6.4.

y

y ¢

z Mz

z ¢

q
O

y ¢ M z 
sin

 q y

z Mz

q
b ¢

Mz cos q

z ¢
Fig. 6.4 Resolution of bending moment vector along principal axes

y and z axes are a set of arbitrary centroidal axes in the section. The bending
moment M acts in the xy plane with the moment vector along the z axis. The
principal axes Oy¢ and Oz¢ are inclined such that

tan 2q = 
2 yz

z y

I
I I−
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The moment resolved along the principal axes Oy¢ and Oz¢ are My¢ = Mz
sin q and Mz¢ = Mz cos q. For each of these moments, the elementary flexure
formula can be used. With the principle of superposition,

sx = y z

y z

M z M y
I I
′ ′

′ ′

′ ′
− (6.9)

It is important to observe that with the positive axes chosen as in Fig. 6.4, a point
with a positive y coordinate will be under compressive stress for positive Mz¢ = Mz
cosq. Hence, a minus sign is used in the equation.

The neutral axis is determined by equating sx to zero, i.e.

y z

y z

M z M y
I I
′ ′

′ ′

′ ′
− = 0

or

z
y
′
′

 = tan b¢ = z y

y z

M I
M I

′ ′

′ ′
(6.10)

The angle b ¢ is with respect to the y¢ axis.

Method 3 This is the most general method.
Choose a convenient set of centroidal axes Oyz
about which the moments and product of iner-
tia can be calculated easily. Let M be the
applied moment vector (Fig. 6.5).

Resolve the moment vector M into two com-
ponents My and Mz along the y and z axes
respectively. We assume the Euler-Bernoulli
hypothesis, according to which the sections
that were plane before bending remain plane
after bending. Hence, the cross-section will
rotate about an axis, such as BB. Consequently,
the strain at any point in the cross-section will
be proportional to the distance from the neu-
tral axis BB.

ex = k¢y¢
Assuming that only sx is non-zero,

sx = Ek¢y¢ = ky¢ (a)

where k is some constant. For equilibirum, the total force over the cross-section
should be equal to zero, since only a moment is acting.

∫∫sx dA = k ∫∫ y¢ dA = 0

As before, this means that the neutral axis passes through the centroid O.
Let b be the angle between the neutral axis and the y axis. From geometry
(Fig. 6.3).

y¢ = y sin b - z cos b (b)

y

My

M

B y ¢ b

z
Mz B

Fig. 6.5 Resolution of bend-
ing moment vector
along two arbitrary
orthogonal axes
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For equilibrium, the moments of the forces about the axes should yield

∫∫sx z dA = ∫∫ ky¢ z dA = My

∫∫sx y dA = ∫∫ ky¢y dA = -Mz

Substituting for y'

k ∫∫ ( )2sin cosyz z dAβ β− = My

k ∫∫ ( )2 sin cosy yz dAβ β− = -Mz

i.e. ( )sin cosyz yk I Iβ β− = My (6.11)

and ( )sin cosz yzk I Iβ β− = -Mz (6.12)

The above two equations can be solved for k and b. Dividing one by the other

sin cos
sin cos

yz y

z yz

I I
I I

β β
β β

−
−

= - y

z

M
M

or
tan

tan
yz y

z yz

I I
I I

β
β

−
−

= - y

z

M
M

i.e. tan b  = y z yz y

yz z z y

I M I M
I M I M

+
+

(6.13)

This gives the location of the neutral axis BB. Next, substituting for k from
Eq. (6.11) into equations (a) and (b)

sx = 
( )sin cos
sin cos

y

yz y

M y z
I I

β β
β β

−
−

= 
( )tan
tan

y

yz y

M y z
I I

β
β

−
−

Substituting for tan b from Eq. (6.13)

sx = 
( ) ( )

2
z y yz y yz z

yz y z

M yI zI M yI zI

I I I

− + −

−
(6.14)

When My = 0 the above equation for sx becomes equivalent to Eq. (6.8).
In recapitulation we have the following three methods to solve unsymmetrical

bending.

Method 1 Let M be the applied moment vector.
Choose a centroidal set of axes Oyz such that the z axis is along the M vector.

The stress sx at any point (y, z) is then given by Eq. (6.8). The neutral axis is given
by Eq. (6.7).
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Method 2 Let M be the applied moment vector.
Choose a centroidal set of axes Oy¢z¢, such that the y¢ and z¢ axes are the

principal axes. Resolve the moment into components My¢ and Mz¢ along the princi-
pal axes. Then the normal stress sx at any point (y¢, z¢) is given by
Eq. (6.9) and the orientation of the neutral axis is given by Eq. (6.10).

Method 3 Choose a convenient set of centroidal axes Oyz about which the prod-
uct and moments of inertia can easily be calculated. Resolve the applied moment
M into components My and Mz. The normal stress sx and the orientation of the
neutral axis are given by Eqs (6.14) and (6.13) respectively.

Example 6.1 A cantilever beam of rectangular section is subjected to a load of
1000 N (102 kgf ) which is inclined at an angle of 30° to the vertical. What is the stress
due to bending at point D (Fig. 6.6) near the built-in-end?

Solution For the section, y and z axes are symmetrical axes and hence these are
also the principal axes. The force can be resolved into two components 1000 cos 30°
along the vertical axis and 1000 sin 30° along the z axis. The force along the vertical
axis produces a negative moment Mz (moment vector in negative z direction).

Mz = - (1000 cos 30°) 400 = - 400,000 cos 30° N cm

The horizontal component also produces a negative moment about the y axis,
such that

My = - (1000 sin 30°) 400 = - 400,000 sin 30° N cm

The coordinates of point D are (y, z) = (-3, -2). Hence, the normal stress at D from
Eq. (6.9) is

sx = y z

y z

M z M y
I I

−

= ( ) ( ) ( ) ( )2 3
400,000 sin 30 400,000 cos 30

y zI I
° °− −

− − −

= 2 sin 30 3 cos 30400,000
y zI I

⎛ ⎞° °
−⎜ ⎟

⎝ ⎠

y
1000 N

0 x
400 cm

( a )

y 3 0 °
1000 N

6 cm
z

4 cm
D

( b )

Fig. 6.6 Example 6.1
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Iy = 
3 3

4 46 4 4 632 cm , 72 cm12 12zI× ×
= = =

\ sx = 3 32400,000 2 32 2 72
⎛ ⎞

−⎜ ⎟× ×⎝ ⎠

= -1934 N/cm2 = -19340 kPa (= -197 kgf/cm2)

Example 6.2 A beam of equal-leg angle section, shown in Fig. 6.7, is subjected to
its own weight. Determine the stress at point A near the built-in section. It is given that
the beam weighs 1.48 N/cm (= 0.151 kgf/cm). The principal moments of inertia are
284 cm4 and 74.1 cm4.

Solution The bending moment at the built-in end is

Mz = -
2

2
wL

= 1.48 90,000
2

×  = - 66,000 N cm

The centroid of the section is located at

( ) ( )
( ) ( )

100 10 50 90 10 5
100 10 90 10
× × + × ×

× + ×
 = 28.7 mm

from the outer side of the vertical leg. The principal axes are the y¢ and z¢ axes.
Since the member has equal legs, the z¢ axis is at 45° to the z axis. The components
of Mz along y¢ and z¢ axes are, therefore,

My¢ = Mz cos 45° = - 47,100 N cm
Mz¢ = Mz cos 45° = - 47,100 N cm

\ sx = y z

y z

M z M y
I I
′ ′

′ ′

′ ′
−

For point A
y = - (100 - 28.7) = -71.3 mm = -7.13 cm

and z = - (28.7 - 10) = -18.7 mm = -1.87 cm

3 m

y ¢
y

28.7 mm

z 100 mm

A
z ¢

Fig. 6.7 Example 6.2
10 mm
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Hence,
y¢ = y cos 45° + z sin 45°

= -50.42 - 13.22 = - 63.6 mm = - 6.36 cm
and

z¢ = z cos 45° - y sin 45°
= -13.22 + 50.42 = +37.2 mm = 3.72 cm

\ sx = - 47,100 3.72 47,100 6.36
74.1 284
× ×

−

= -2364 - 1055 = -3419 N/cm2 = -341,900 kPa

Example 6.3 Figure 6.8 shows a unsymmetrical one cell box beam with four-
corner flange members A, B, C and D. Loads Px and Py are acting at a distance of
125 cm from the section ABCD. Determine the stresses in the flange members
A and D. Assume that the sheet-metal connecting the flange members does not
carry any flexual loads.

Solution The front face ABCD is assumed built-in.

  Member Area y¢ z¢ Ay¢ Az¢ y z

A 6.5 30 40 195 260 14.9 13.7
B 3.5 20 0 70 0 4.9 -26.3
C 5.0 0 40 0 200 -15.1 13.7
D 2.5 0 0 0 0 -15.1 -26.3

S = 17.5 265 460

Therefore, the coordinates of the centroid from D are

y* = 265 15.1 cm
17.5

Ay
A

Σ ′
= =

Σ

z* = 460 26.3 cm
17.5

Az
A

Σ ′ = =
Σ

y

A

125 cm

2500 kgf = Py

640 kgf

y ¢

B

20 cm

D
40 cm

C

z

z ¢

Fig. 6.8 Example 6.3

30 cm
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 Member Area y z y2 z2 Ay2 Az2 Ayz

A 6.5 14.9 13.7 222 187.7 1443 1220.1 1326.8
B 3.5 4.9 -26.3 24 691.7 84 2421 -451
C 5.0 -15.1 13.7 228 187.7 1140 938.5 -1034.4
D 2.5 -15.1 -26.3 228 691.7 570 1729.3 992.8

\ Iz = SAy2 = 3237 cm4

Iy = SAz2 = 6308.9 cm4

Iyz = SAyz = +834.2 cm4

One should be careful to observe that the loads Py and Pz are acting at
x = -125 cm
\ Moment about z axis = Mz = -312500 kgf cm = -30646 Nm

Moment about y axis = My = +80000 kgf cm = +7845.3 Nm
From Eq. (6.14)

sx = 
( )

( ) ( )2

312500 6308.9 834.2 80000 (834.2 3237 )

834.2 3237 6308.9

y z y z− − + −

− ×

= -96.57y - 0.09z
\ (sx)A = - (96.57 ¥ 14.9) - (0.09 ¥ 13.7) = -1440 kgf.cm2

= -141227 kPa
(sx)D = - (-96.57 ¥ 15.1) - (- 0.09 ¥ 26.3) = +1460 kgf.cm2

= 143233 kPa

6.3 REGARDING EULER–BERNOULLI HYPOTHESIS
We were able to solve the flexure problem because of the nature of the cross-
section which remained plane after bending. It is natural to question how far this
assumption is valid. In order to determine the actual deformation of an intially
plane section of a beam subjected to a general loading, we will have to use the
methods of the theory of elasticity. Since this is beyond the scope of this book,
we shall discuss here the condition necessary for a plane section to remain plane.
We have from Hooke's law

ex = ( )1
x y zE

σ ν σ σ⎡ ⎤− +⎣ ⎦

ey = ( )1
y z xE

σ ν σ σ⎡ ⎤− +⎣ ⎦ (c)

ez = ( )1
z x yE

σ ν σ σ⎡ ⎤− +⎣ ⎦

Solving the above equations for the stress sx we get

sx = ( ) ( )
( )

11 1 2 x y z x
E Eν ε ε ε ε

νν ν
+ + +

++ −
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or from Eq. (3.15)
sx = l J1 + 2Gex (6.15)

where l is a constant and G is the shear modulus. According to the Euler-Bernoulli
hypothesis, we have

sy = sz = 0
Hence,

sx = x
x

u
E E

x
∂

ε
∂

= (6.16a)

Differentiating,

 x
x

∂σ
∂

= 
2

2
xu

E
x

∂
∂

(6.16b)

From equilibrium equation and stress-strain relations

x
x

∂σ
∂

= xy xz
y z

∂τ ∂τ
∂ ∂

− −

= yx x zuu u u
G G

y y x z z x
∂∂ ∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
⎛ ⎞ ⎛ ⎞− + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

=
2 2

2 2
yx x zuu u uG G

x y zy z

∂∂ ∂ ∂∂
∂ ∂ ∂∂ ∂

⎛ ⎞ ⎛ ⎞
− + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= - ( )
2 2

2 2
x x

y z
u u

G G
xy z

∂ ∂ ∂ ε ε
∂∂ ∂

⎛ ⎞
+ − +⎜ ⎟⎜ ⎟

⎝ ⎠
(6.17a)

Since sy = sz = 0, from Eq. (c),

ey = ez = -
E
ν  sx

Hence, Eq. (6.17a) becomes

x
x

∂σ
∂

= -
2 2

2 2
2x x xu u GG

E xy z
∂ ∂ ∂σν

∂∂ ∂

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

i.e. ( )21x G
x E

∂σ ν
∂

− = -
2 2

2 2
x xu u

G
y z

∂ ∂
∂ ∂

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

or x
x

∂σ
∂

= -
2 2

2 22
x xu uGE

E G y z
∂ ∂

ν ∂ ∂

⎛ ⎞
+⎜ ⎟⎜ ⎟− ⎝ ⎠

(6.17b)

Substituting in Eq. (6.16b),

2 2 2

2 2 22
x x xu u uGEE

E Gx y z
∂ ∂ ∂

ν∂ ∂ ∂

⎛ ⎞
+ +⎜ ⎟⎜ ⎟− ⎝ ⎠

= 0
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i.e. ( )
2 2 2

2 2 22 x x xu u u
E G G

x y z
∂ ∂ ∂

ν
∂ ∂ ∂

⎛ ⎞
− + +⎜ ⎟⎜ ⎟

⎝ ⎠
= 0

or
2 2 2

2 2 2
x x xu u u

A G
x y z

∂ ∂ ∂
∂ ∂ ∂

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
= 0 (6.18)

where A is a constant. From flexure formula and Eq. (6.16a)

sx = x

z

uMy E
I x

∂
∂

= (d)

In the above equation, M is a function of x only and y is the distance measured
from the neutral axis; Iz is the moment of inertia about the neutral axis which is
taken as the z axis. Then

2

2
xu

E
z

∂
∂

= 
z

y M
I x

∂
∂

Integrating Eq. (d)

Eux = ( , )
z

y M dx y z
I

φ+∫

where f is a function of y and z only. Differentiating the above expression
2

2
xu

E
y

∂
∂

= 
2

2
( , )y z
y

∂ φ
∂

and
2

2
xu

E
z

∂
∂

= 
2

2
( , )y z
z

∂ φ
∂

Substituting these in Eq. (6.18),
2 2

2 2
( , ) ( , )( )

z

y z y zAy M x G
EI x E y z

∂ φ ∂ φ∂
∂ ∂ ∂

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦
 = 0

or 1
( )M xK
x

∂
∂

 = 
2 2

2 2 2
( , ) ( , )y z y zK
y z

∂ φ ∂ φ
∂ ∂

⎡ ⎤
+⎢ ⎥

⎣ ⎦
The left-hand side quantity is a function of x alone or a constant and the right-
hand side quantity is a function of y and z alone or a constant. Hence, both these
quantities must be equal to a constant, i.e.

 ( )M x
x

∂
∂

= a constant

or M (x) = K3x + K5

This means that M(x) can only be due to a concentrated load or a pure moment. In

other words, the Euler-Bernoulli hypothesis that sx = 
z

My
I  (which is equivalent to

plane sections remaining plane) will be valid only in those cases where the bend-
ing moment is a constant or varies linearly along the axis of the beam.
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6.4 SHEAR CENTRE OR CENTRE OF FLEXURE
In the previous sections we considered the bending of beams subjected to pure
bending moments. In practice, the beam carries loads which are transverse to the
axis of the beam and which cause not only normal stresses due to flexure but also
transverse shear stresses in any section. Consider the cantilever beam shown in
Fig. 6.9 carrying a load at the free end. In general, this will cause both bending
and twisting.

y

P

(L – x)
L

x

Fig. 6.9 Cantilever beam loaded by force P

Let Ox be the centroidal axis and Oy, Oz the principal axes of the section. Let
the load be parallel to one of the principal axes (any general load can be resolved
into components along the principal axes and each load can be treated sepa-
rately). This load in general, will at any section, cause

(i) Normal stress sx due to flexure;
(ii) Shear stresses txy and txz due to the transverse nature of the loading and

(iii) Shear stresses txy and txz due to torsion
In obtaining a solution, we assume that

sx = -
( )

z

P L x y
I
−

, sy = sz = tyz = 0 (6.19)

This is known as St. Venant's assumption.
The values of txy and txz are to be determined with the equations of equilib-

rium and compatibility conditions. The value of sx as given above is derived
according to the flexure formula of the previous section. The determination of
txy and txz for a general cross-section can be quite complex. We shall not try
to determine these. However, one important point should be noted. As said
above, the load P in addition to causing bending will also twist the beam. But
P can be applied at such a distance from the centroid that twisting does not
occur. For a section with symmetry, the load has to be along the axis of
symmetry to avoid twisting. For the same reason, for a beam with a general
cross-section, the load P will have to be applied at a distance e from the
centroid O. When the force P is parallel to the z-axis, a position can once
again be established for which no rotation of the centroidal elements of the
cross-sections occur. The point of intersection of these two lines of the bend-
ing forces is of significance. If a transverse force is applied at this point, we
can resolve it into two components parallel to the y and z-axes and note from
the above discussion that these components do not produce rotation of
centroidal elements of the cross-sections of the beam. This point is called the
shear centre of flexure or flexural centre (Fig. 6.10).

e

P
y

oz
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It is important to observe that the location
of the shear centre depends only on the
geometry, i.e. the shape of the section. For a
section of a general shape, the location of
the shear centre depends on the distribution
of txy and txz, which, as mentioned earlier, can
be quite complex. However, for thin-walled
beams with open sections, approximate loca-
tions of the shear-centres can be determined
by an elementary analysis, as discussed in
the next section.

6.5 SHEAR STRESSES IN THIN-WALLED OPEN
 SECTIONS: SHEAR CENTRE

Consider a beam having a thin-walled open section subjected to a load Vy,
as shown in Fig. 6.11(a). The thickness of the wall is allowed to vary. As
mentioned in the previous section, the load Vy produces in general, bend-
ing, twisting and shear in the beam. Our object in this section is to locate
that point through which the load Vy should act so as to cause no twist, i.e. to
locate the shear centre of the section. Let us assume that load Vy is applied
at the shear centre. Then there will be normal stress distribution due to
bending and shear stress distribution due to vertical load. There will be no
shear stress due to torsion.

Fig. 6.10 Load P passing
through shear centre

y

P
P1

o
z

P2

y

Vy

(a) (b)

Fig. 6.11 Thin-walled open section subjected to shear force

s = 0

ts

txs

x
z

x
Dx

s

The surface of the beam is not subjected to any tangential stress and hence,
the boundary of the section is an unloaded boundary. Consequently, the shear
stresses near the boundary cannot have a component perpendicular to the bound-
ary. In other words, the shear stresses near the boundary lines of the section are
parallel to the boundary. Since the section of the beam is thin, the shear stress
can be taken to be parallel to the centre line of the section at every point as
shown in Fig. 6.11(b).

Consider an element of length Dx of the beam at section x, as shown in
Fig. 6.12.
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sx

txs

tsx

Mz

x

Fig. 6.12 Free-body diagram of an elementary length of beam

Let Mz be bending moment at section x and Mz + zM
x

∂
∂

Dx the bending moment at

section x + Dx◊ sx and sx + ,x xx
∂σ
∂ ∆  are corresponding flexural stresses at these

two sections. It is important to observe that for the moments shown the normal
stresses should be compressive and not as shown in the figure. However, the
sign of the stress will be correctly given by Eq. (6.8). Considering a length s of the
section, the unbalanced normal force is balanced by the shear stress tsx distrib-
uted along the length Dx. For equilibrium, therefore,

0 0
0

s s
x

sx s x xt x t ds x t ds
x

∂σ
τ σ σ

∂
⎛ ⎞∆ − + + ∆ =⎜ ⎟
⎝ ⎠

∫ ∫

i.e.
0

1 s
x

sx
s

t ds
t x

∂σ
τ

∂
= − ∫ (6.20)

ts is the wall thickness at s. Observing that My = 0, the normal stress sx is given by
Eq. (6.8) as

sx = 2
y yz

z
yz y z

yI zI
M

I I I

−

−

Hence, x
x

∂σ
∂

= 2
y yz z

yz y z

yI zI M
xI I I

∂
∂

−

−
(6.21)

Recalling from elementary strength of materials zM
x

∂
∂

 = -Vy, and substituting in
Eq. (6.20)

tsx = 2
0

1 ( )
sy

y yz
s yz y z

V
I y I z t ds

t I I I
−

−
∫

or tsx = ( )2
0 0

s sy
y yz

s y z yz

V
I yt ds I zt ds

t I I I

⎡ ⎤
− −⎢ ⎥

− ⎣ ⎦
∫ ∫ (6.22)

The first integral on the right-hand side represents the first moment of the area
between s = 0 and s about the z axis. The second integral is the first moment of the
same area between s = 0 and s about the y axis. Since txs is the complementary
shear stress, its value at any s is also given by Eq. (6.22).

σσ ∂
+ ∆

∂
x

x x
x

∂
+ ∆

∂
z

z
M

M x
x
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Let Qz be the first moment of the area between s = 0 and s about the z axis and
Qy the first moment of the same area about the y axis.
Then,

( )2
y

sx xs y z yz y
s y z yz

V
I Q I Q

t I I I
τ τ ⎡ ⎤= = − −⎣ ⎦−

(6.23)

Equation (6.22) gives the shear stress distribution at section x due to the vertical
load Vy acting under the explicit assumption that no twisting is caused. Hence, the
shear stress distribution txs must be statically equivalent to the load Vy. This
means the following:

(i) The resultant of txs integrated over the section area must be equal to Vy.
(ii) The moment of txs about the centroid (or any other convenient point)

must be equal to the moment of Vy about the same point. That is,
Vy ez = moment of txs about O

where ez is the eccentricity or the distance of Vy from O to avoid twisting
(Fig. 6.13).

If a force Vz is acting instead of Vy, we can determine the shear stress txs at any s as

txs = -
( )2

0 0

s s
z

z yz
s y z yz

V I zt ds I yt ds
t I I I

⎡ ⎤
−⎢ ⎥

− ⎣ ⎦
∫ ∫ (6.24)

or txs = -
( )2

z
z y yz z

s y z yz

V
I Q I Q

t I I I
⎡ ⎤−⎣ ⎦−

(6.25)

If the above shear stress distribution is due to the shear force alone and not due
to twisting also, then the moment of Vz about the centroid O must be equal to the
moment of txs about the same point, i.e.

Vy ez = moment of txs about O

Vy
y

ez

z

txs

VyV
y

Vz

Shear Centre ey

z ez

Fig. 6.13 Location of shear centre and
flow of shear stress

Fig. 6.14 Location of shear centre for
a general shear force

O O

Any arbitrary load V can be resolved into two components Vy and Vz and the
resulting shear stress distribution txs at any s is given by superposing
Eqs (6.22) and (6.25). The point with coordinates (ey, ez), through which Vz and Vy
should act to prevent the beam from twisting, is called the shear centre or the
centre of flexure, as mentioned in Sec. 6.4. This is shown in Fig. 6.14.
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Example 6.4 Determine the shear stress distribution in a channel section of a
cantilever beam subjected to a load F, as shown. Also, locate the shear centre of
the section (Fig. 6.15).

Solution Let Oyz be the principal axes, so that Iyz = 0. From Eq. (6.23) then,
noting that F is negative,

txs = ( )y z
s y z

F I Q
t I I

or txs = z

s z

FQ
t I

where Qz is the statical moment of the area from s = 0 to s about z axis. Consider-
ing the top flange, ts = t1, and the statical moment is

Qz = 1
2

t sh

Hence, txs = for 0
2 z

Fsh s b
I

≤ < (6.26)

i.e. the shear stress increases linearly from s = 0 to s = b. For s in the vertical web,
ts = t2, and the statical moment is the moment of the shaded area in Fig. (6.15)
about the z axis, i.e.

Qz = ( ) ( )1 2
1

2 2 2 2
h h hbt y t y y⎡ ⎤+ − + −⎢ ⎥⎣ ⎦

2
2

1 2
1
2 4

hbt h y t
⎡ ⎤⎛ ⎞

= + −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

Hence, txs = 
2

2
1 2

22 4z

F hbt h y t
t I

⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

for 
2 2
h hy− < < + (6.27)

i.e. the shear varies parabolically from s = b to s = b + h. For s in the horizontal
flange, ts = t1 and the statical moment is

Qz = ( ) ( )1 10
2 2
h hbt s b h t+ + − − −

2

12 2
h hbh s t⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

t1
y

s = 0

y

z
t2

o h

b

F F

Fig. 6.15 Example 6.4
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ez

C
F

( a ) ( b )

Fig. 6.16 Example 6.4—Shear
stress distribution
diagrams

Hence, txs = 
2

2 2 2z

F h hbh s
I

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
for 2b + h ≥ s > b + h (6.28)

/ 2

2
/ 2

h

xs
h

t dyτ
+

−
∫ = 

2
2

1 22 4z

F hbt h dy y t dy
I

⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ ∫

3 3
2

1 2 22 4 12z

F h hbt h t t
I

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

3
2 2

12 6z

t hF bt h
I

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
Now for the section

Iz = 
2 2 3

1 1 24 4 12
h h hbt bt t+ +

2 3

1 22 12
h hbt t= + (6.29)

Hence,
/ 2

/ 2

h

xs s
h

t dyτ
+

−
∫ = F

Hence, the resultant of txs over the area is equal to F. In addition, it has a moment.
Taking moment about the midpoint of the vertical web [(Fig. 6.15(b)]

M  = ( )resultant of in top flange
2xs
hτ ×

( )resultant of in bottom flange
2xs
hτ+ ×

( )2 resultant of in top flange
2xs
hτ= ×

( )2 average of in top flange area
2xs
hτ= × ×

i.e. the shear varies linearly. When
s = 2b + h, i.e. the right tip of the
bottom flange, the shear is zero. The
variation of txs is shown in Fig. 6.16.

This shear stress distribution
should be statically equivalent to
applied shear force F. It is easy to
see that this is equal to F in magni-
tude. On integrating txs over the area
of the section, the resultant of the
stress in the top and bottom flange
cancel each other, and therefore, there is
no horizontal resultant. Integrating txs
over the vertical web, we have
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y

F

R q
df

2R

O

(a) (b)

Fig. 6.17 Example 6.5

π
2F
Rt

O

12
4 2z

Fbh hbt
I

⎛ ⎞= × ×⎜ ⎟
⎝ ⎠

2 2
1

4 z

Fb h t
I

=

This must be equal to the moment of F about the same point. Hence, F must act
at a distance ez from C such that

Fez = 
2 2

1
4 z

Fb h t
I

or ez = 
2 2

1
4 z

b h t
I

Substituting for Iz from Eq. (6.29)

ez = 
2 2

1
2 3

1 2

3
6

b h t
bt h t h+

or ez = 
2

1

1 2

3
6

b t
bt t h+

Hence, the shear centre is located at a distance ez from C [Fig. 6.16(b)].

Example 6.5 Determine the shear stress distribution for a circular open section
under bending caused by a shear force. Locate the shear centre (Fig. 6.17).

Solution The static moment of the crossed section is

Qz = ( )
0

sinR d t R
θ

φ φ∫

 ( )2 1 cosR t θ= −
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Hence, from Eq. (6.23), noting that Iyz = 0, and for a vertically upward shear
force F,

txs = ( )2 1 cosz

z z

FQ F R t
tI tI

θ− = − −

But Iz = 3R tπ

Hence, txs = ( )1 cosF
Rt

θ
π

− −

For q = 180° txs = 2F
Rtπ

−

The distribution is shown in Fig. 6.17(b). The moment of this distribution
about O is,

M = ( )
2

0
xs R d t R

π
τ θ∫

( )
2

2

0
1 cosF R t d

Rt
π

θ θ
π

= − −∫

= -2FR

This should be equal to the moment of the applied transverse force F about O.
For F positive, the moment about O is negative since it is directed from + z to + y.
Hence the, force F must be applied at the shear centre C, which is at a distance of
2R from O.

6.6 SHEAR CENTRES FOR A FEW OTHER SECTIONS
In a thin-walled inverted T section, the distribution of shear stress due to
transverse shear will be as shown in Fig. 6.18(a). The moment of this dis-
tributed stress about C is obviously zero. Hence, the shear centre for this
section is C.

Fig. 6.18 Location of shear centres for inverted T section and angle section
(a)

Shear Centre
C

( b )
Shear Centre C

For the angle section, the moment of the shear stresses about C is zero and
hence, C is the shear centre. Figure 6.19 shows how the beams will twist if the loads
are applied through the centroids of the respective sections and not through the
shear centres.
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S.C .

( a )

S .C .

( b )

S .C .

(c )

Fig. 6.19 Twisting effect on some cross-sections if load is not applied through
shear centre

6.7 BENDING OF CURVED BEAMS
 ( WINKLER–BACH FORMULA)

So far we have been discussing the bending of beams which are initially
straight. Now we shall study the bending of beams which are initially curved.
We consider the case where bending takes place in the plane of curvature.
This is possible when the beam section is symmetrical about the plane of
curvature and the bending moment M acts in this plane. Let r0 be the initial
radius of curvature of the centroidal surface. As in the case of straight beams,
it is again assumed that sections which are plane before  bending remain plane
after bending. Hence, a transverse section rotates about an axis called the
neutral axis, as shown in Fig. 6.20.

Consider an elementary length of the curved beam enclosing an angle Df.
Owing to the moment M, let the section AB rotate through dDf and occupy the
position A¢B¢. The section rotates about NN, the neutral axis. SN is the trace of
the neutral surface with radius of curvature r0. Fibres above this surface get
compressed and fibres below this surface get stretched. Fibres lying in the
neutral surface remain unaltered. Consider a fibre at a distance y from the neutral
surface. The unstretched length before bending is (r0 - y) Df. The change in

r0
r0

N e
N

– y
C x

y

Fig. 6.20 Geometry of bending of curved beam

( a )

Df

dDf

r 0r 0

r

B¢ B
GM

S y
N C

F

A
A¢C

M

sxdA

( b )
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length due to bending is y(d Df). Noting that for the moment as shown, the
strain is negative,

0

( )strain
( )x

y
r y

δ φε
φ

∆
≡ = −

− ∆
(6.30)

It is assumed here that the quantity y remains unaltered during the process
of bending. The value of (d Df)/Df can be obtained from Fig. 6.20(a). It is
seen that

SN = (Df + d Df) r
where r is the radius of curvature of the neutral surface after bending. Also

SN = r0 Df
Hence,

0

( )r
r

φ δ φ
φ

∆ + ∆
∆

= 1

i.e.   δ φ
φ
∆
∆

 = 0 1
r
r −

0
0

1 1r r r
⎛ ⎞= −⎜ ⎟⎝ ⎠

(6.31)

Substituting in Eq. (6.30)

ex = 0
0 0

1 1y r
r y r r

⎛ ⎞− −⎜ ⎟− ⎝ ⎠
(6.32a)

Now we shall assume that only sx is acting and that sy = sz = 0. This is similar
to the Bernoulli-Euler hypothesis for the bending of straight beams. On this
assumption,

0
0 0

1 1
x

Ey r
r y r r

σ ⎛ ⎞= − −⎜ ⎟− ⎝ ⎠
(6.32b)

The above expression brings out the main distinguishing feature of a curved
beam. The value of y must be comparable with that of r0, i.e. the beam must have
a large curvature in which the dimensions of the cross-sections of the beam are
comparable with the radius of curvature r0. On the other hand, if the curvature
(i.e. 1/r0) is very samll, i.e. r0 is very large compared to y, then Eq. (6.32b)
becomes

0

1 1
x Ey r rσ ⎛ ⎞= − −⎜ ⎟⎝ ⎠

With r0 Æ •, the above equation reduces to that of the straight beam. For
equilibrium, the resultant of sx over the area should be equal to zero and the
moment about NN should be equal to the applied moment M. It should be
observed that the strains in fibres above the neutral axis will be numerically
greater than the stains in fibres below the neutral axis. This is evident from Eq.
(6.32a), since for positive y, i.e. for a fibre above the neutral axis, the denomina-
tor (r0 - y) will be less than that for a negative y. Since the resultant normal force
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is zero, the neutral axis gets shifted towards the centre of the curvature. For
equilibrium, we have,

x
A

dAσ∫ = 0
0 0

1 1 0
A

y dAEr
r r r y

⎛ ⎞− − =⎜ ⎟ −⎝ ⎠
∫

and x
A

y dAσ−∫ = 
2

0
0 0

1 1
A

y dAEr M
r r r y

⎛ ⎞+ − =⎜ ⎟ −⎝ ⎠
∫

From the first equation above

0A

y dA
r y−∫ = 0 (6.33)

The second equation can be written as

0 0
0 0

1 1
A A

y dAEr y dA r M
r r r y

⎡ ⎤⎛ ⎞+ − − + =⎢ ⎥⎜ ⎟ −⎝ ⎠ ⎣ ⎦
∫ ∫

The first integral represents the static moment of the section with respect to the
neutral axis and is equal to (-Ae), where e is the distance of the centroid from the
neutral axis NN and this moment is negative. The second integral is zero accord-
ing to Eq. (6.33). Thus,

0
0

1 1Er Ae
r r

⎛ ⎞−⎜ ⎟
⎝ ⎠

= M (6.34)

But from Eq. (6.32)

0
0

1 1Er
r r

⎛ ⎞−⎜ ⎟
⎝ ⎠

0( )x r y
y

σ −
= −

Substituting this in Eq. (6.34)

( )0x r y
Ae

y
σ −

− = M

or sx = ( )0

yM
Ae r y

−
−

(6.35)

As Eq. (6.35) shows, the normal stress varies non-linearly across the depth. The
distribution is hyperbolic and one of its asymptotes coincides with the line pass-
ing through the centre of curvature, as shown in Fig. 6.21(a). The maximum stress
may occur either at the top or at the bottom of the section, depending on its
shapes. Equation (6.35) is often referred to as the Winkler-Bach formula.

In some texts, the origin of the coordinate system is taken at the centroid of the
section instead of at the point of intersection of the neutral axis and the y axis. If
the origin is taken at the centroid and y ¢ is the distance of any fibre from this
origin, then putting y = y¢ - e and r0 = r0 - e, Eq. (6.35) becomes

sx = 
0

y eM
Ae e y eρ

′ −
− ′− − +
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r0

e

r0

N C

Neutral Axis

N

( b )( a )

Fig. 6.21 Distribution of normal stress and location of neutral axis

or sx = 
0

y eM
Ae yρ

′ −
− ′−

(6.36)

To use Eq. (6.35), one requires the value of r0. For this, consider Eq. (6.33).
Introducing the new variable u

u = r0 - y
the equation becomes

0

A

r u
dA

u
−

∫ = 0

Hence, r0 = 
/

A

A
dA u∫

(6.37)

The integral in the denominator represents a geometrical characteristic of the sec-
tion. In other words, the values of r0 and e are independent of the moment within
elastic limit. We shall calculate these for a few of the commonly used sections.

Rectangular Section From Fig. 6.22, dA = b du and u = r0 - y¢. Hence,

A
dA
u∫

0

0

/ 2 0

/ 2 0

2log

2

h

n
h

h
b du b

u h

ρ

ρ

ρ

ρ

+

−

+
= =

−
∫

Hence, r0 = 
2 1

0

0

log ( / )
2log

2

n

n

h h
r rh

h

ρ

ρ

=
⎛ ⎞+⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎝ ⎠

(6.38)

The shift of the neutral axis from the centroid is

e = 0

0

0

2log

2
n

h
h

h

ρ
ρ

ρ

−
⎛ ⎞+⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎝ ⎠

(6.39a)

or e = 0
2

1
logn

h
r
r

ρ −
⎛ ⎞
⎜ ⎟
⎝ ⎠

(6.39b)
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Trapezoidal Section (see Fig. 6.23) Let h1 + h2 = h. The variable width of the
section is

b = 1 2
2 2

( ) ( )b bb h e y
h
−

+ + +

and dA = [ ]2 1 2 2( ) ( )/dy b b b h e y h+ − + +

u = r0 - e - y

\ dA
u∫

1

2

2 1 2 2

0

( ) ( )/h e

h e

b b b h e y h dy
e yρ

−

− −

+ − + +⎡ ⎤= ⎢ ⎥− −⎣ ⎦
∫

[ ] 2
2 2 1 2 1 2

1
( )/ log ( )rb r b b h b b

r
= + − − −

When b1 = b2, the above equation reduces to that of the previous case.

( ) [ ]1 2 2
0 2 2 1 2 1 2

1
( )/ log ( )

2
b b h r

r b r b b h b b
r

+ ⎧ ⎫= + − − −⎨ ⎬
⎩ ⎭

(6.40)

T-section (see Fig. 6.24) Proceeding as in the previous case, we obtain for
the section

3 2
1 2

1 3
log log

r rdA b b
u r r

= +∫ (6.41)

I-Section For the I-section shown in Fig. 6.25, following the same procedure as
in the preceding case,

3 4 2
1 2 3

1 3 4
log log

r r rdA b b b
u r r r

= + +∫ (6.42)

y

r1
r0

r0

u
r2

h

du

b

y

u
r0

r0

r1

r2
b1

C

h1

h2

b2

Fig. 6.22 Parameters for a rectangular
section to calculate r0 accord-
ing to Eq. (6.31)

Fig. 6.23 Parameters for a trapezoidal
section to calculate r0 accord-
ing to Eq. (6.31)
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Circular Section (see Fig. 6.26)

u = r0 - y = (r0 - e) - (a cos q - e) = r0 - a cos q

 du = a sin q dq
 dA = 2a sin q du = 2a2 sin2 q dq

A

dA
u∫

 ( )2 2
0

0
2 sin / cosa a d

π
θ ρ θ θ= −∫

  
2

0

1 cos2
cos

a d
b

π θ θ
θ

−
=

−∫ , where 0b a
ρ

=

Adding and substracting (b cos q + b2) to the
numerator,

A

dA
u∫

 = ( )1/ 222 1a b bπ ⎡ ⎤− −⎢ ⎥⎣ ⎦

 ( )1/ 22 2
0 02 aπ ρ ρ⎡ ⎤= − −⎢ ⎥⎣ ⎦

and r0 = 
2

2 2 1/ 2
0 02 ( )

a
ρ ρ α⎡ ⎤− −⎣ ⎦

Example 6.6 Determine the maximum tensile and maximum compressive stresses
across the Sec. AA of the member loaded, as shown in Fig. 6. 27. Load P = 2000 kgf

y

r1
r3

r2 b1

b2

r1
r3

b1 r4 r2

b2

Fig. 6.24 Parameters for T-section
to calculate r0 according
to Eq. (6.31)

Fig. 6.25 Parameters for I-section to
calculate r0 according to
Eq. (6.31)

b3

Fig. 6.26 Parameters for a
circular section to
calculate r0 according
to Eq. (6.31)

y

u
r0r0

q
a

(19620 N).
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Solution For the section r0 = 11 cm, h = 6 cm, b = 4 cm.

\ 0

0

/2
log

/2
h
h

ρ
ρ

+
−

= 7log 0.5596
4
=

From equations (6.38) and (6.39)

r0 = 6 10.73, 11 10.73 0.27
0.5596

e= = − =

From Eq. (6.35), owing to bending moment M

xσ ′ = -
0( )

yM
Ae r y−

= 
24 0.27 (10.73 )

yM
y

−
× −

For the problem
M = P (a + a + h/2) = 19P

At C, y = -(e + h/2) = -3.27

and, at D, y = 2.73
2
h e− =

Hence, ( )x Cσ ′ = ( 3.27)19
24 0.27 (10.73 3.27)

P −− ×
× +

 = 0.6848 P

and ( )x Dσ ′ = 19 2.73 1.001
24 0.27 (10.73 2.73)

P P− = −
× −

The stress due to direct loading is

xσ ′′ = 0.0417
24

P P P
A

− = − = −

Hence the combined stresses are
(sx)C = (0.6848 - 0.0417) P

= 0.6431P = 129 kgf/cm2 (12642 kPa)

P
a a

a a = 8 cm

A A

4 cm
6 cm P P

Fig. 6.27 Example 6.6

C D

P

M
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and
(sx)D = (-1.001 - 0.0417) P

= -1.0427 P = -209 kgf/cm2 (20482 kPa)

Example 6.7 Determine the stress at point D of a hook (Fig. 6.28) having a
trapezoidal section with the following dimensions: b1 = 4 cm, b2 = 1 cm, r1 = 3 cm,

dA
u∫ = 10[1 10(4 1)/7] log (4 1)

3
+ − − −

= 3.363 cm

A = 2
1 2

1 35( ) 17.5 cm
2 2

b b h+ = =

\ r0 = A/3.363 = 17.5/3.363 = 5.204 cm

r0 = 1 2

1 2

( 2 ) 143 3 5.80 cm
3 ( ) 5
b b h

b b
+

+ = + =
+

\ e = r0 - r0 = 0.596
The moment across section D is

     M = -3000 r0 = -17,400 kgf cm (1705 Nm)
The normal stress due to bending is therefore

( )x Dσ ′ = 
0

yM
Ae r y

−
−

       17,400 2.204
17.5 0.596 5.204 2.2

= + ×
× −

        = 1226 kgf/cm2 (120,148 kPa)
The normal stress due to axial loading is

( )x Dσ ′′ = 23000 3000 171 kgf /cm17.5A = =

The total normal stress is therefore,
(sx)D = 1397 kgf/cm2, or 136,907 kPa

6.8 DEFLECTIONS OF THICK CURVED BARS
In Chapter 5, the problems of thin rings and thin curved members were analyzed
using energy methods. In this section, we shall discuss a few problems involv-
ing thick rings. The energy method will be used. Consider the member shown
in Fig. 6.29(a).

In the straight part of the U-ring, across any section, there is a tangential
force P and a moment (Px - M0). In the curved part of the member, there will

r2 = 10 cm, h = 7 cm, force P = 3000 kgf (29400 N).

P

D
P

b1 b2
r1 h

r2

Fig. 6.28 Example 6.7

Solution For the section
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be a tangential force V, a normal force N and a bending moment M. Their
values are

V = P cos q
N = P sin q
M = M0 - (d + r0 sin q ) P

To calculate the strain energy stored we proceed as follows (we make use of the
expressions developed in Chapter 5):
(i) In the straight part of the member: Owing to the shear force V, the strain energy
stored in a small length Ds is

2

2V
V sU
AG

α ∆∆ = (6.43)

where a is a numerical factor depending on the shape of the cross section, A is
the area of the section and G is the shear modulus.

Because of the bending moment M, the energy stored is
2

2M
M sU

EI
∆∆ = (6.44)

where I is the moment of inertia about the neutral axis, which for a straight beam
passes through the centroid of the section.

In general, the strain energy due to V is small as compared to that due
to M.
(ii) In the curved part of the member: Owing to the shear force V, the strain energy
stored in a small sectoral element, enclosing an angle Df, is

2

2V
V sU
AG

α ∆∆ = (6.45)

If r0 is the radius of curvature of the centroidal fibre, Ds = r0 Df.

d

r0 P
P

M0

( a )

N
M

q

( b )N

M

d Df

Df
r0

(c )

Fig. 6.29 Geometry of deflection of a curved bar

V

C

M0
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Because of the normal force N, which is assumed to be acting at the centroid of
the cross-section,

2

2N
N sU

AE
∆∆ = (6.46)

Owing to bending moment M, the energy stored is equal to the work done. If d Df
is the change in the angle due to bending [Fig. 6.29 (c)]

DUM = 1 ( )
2

M δ φ∆

From Eq. (6.31),

d Df = 0
0

1 1r
r r

φ ⎛ ⎞∆ −⎜ ⎟
⎝ ⎠

From Eq. (6.34), substituting for the right-hand part in the above equation

d Df = M
AeE

φ∆

Hence, DUM = 
2

2
M

AeE
φ∆

Putting Df = 
0

s
ρ
∆

   DUM = 
2

02
M s
AeEρ

∆ (6.47)

If N is applied first and then M, owing to the rotation of the section, the centroid
C [Fig. 6.29(c)] moves through a distance e0 Ds, where e0 is the strain at C and
consequently, the force N does additional work equal to

DUMN = 0N sε ∆

e0 from Eq. (6.35) is

e0 = 0

0 0( )
x yM

E AeE r y
σ

= −
−

In the above equation, M is positive, according to the convention followed
(Fig. 6.20). y0 is the distance of the centroidal fibre from the neutral axis and is
equal to -e. Also, r0 = r0 + e. With these,

e0 = 
0

M
A Eρ

+

Hence the work done by N is

DMN = 
0

MN s
A Eρ

∆ (6.48)

The same result is obtained if M is applied first and then N. This is according to
the principle of superposition, which is valid for small deformations. This can be
seen by referring to Fig. 6.30.



Bending of Beams 219

The normal force N acting across the sec-
tion produces uniform strain en; since the
lengths of the fibres are different, face AB
will not shift parallel to itself. The extension
of the fibre at b will be en r1 Df. The angle
enclosed between AB and A¢B¢ is therefore

( )
( )

2 1

2 1

n
n

r r
r r

ε φ
δθ ε φ

∆ −
= = ∆

−

Owing to this rotation of A¢B¢, the moment M
does work equal to

DUNM = nMε φ∆

A¢ N

A
M

B
dq

Df
r1

r2

Fig. 6.30 Deformation of a
section of curved bar

B ¢

Since en = N
AE

DUNM = MN
AE

φ∆

0

MN s
AEρ

∆
=

For a straight beam, the work done by N when M is applied is zero since the section
rotates about the neutral axis which passes through the centroid. This is also con-
firmed in the above expression where r0 = • for a straight beam and therefore
DUMN = 0. Combining all the energies detailed above, the total strain energy is.

U = ( )V N M MN
s

U U U U∆ + ∆ + ∆ + ∆∫

2 2 2

0 02 2 2s

V N M MN ds
AG AE AeE AE

α
ρ ρ

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
∫ (6.49)

For the straight part of the beam, the last expression will be zero and the third
expression (which becomes indeterminate since e = 0 and r0 = •) is replaced by
M 2/2EI. With the strain energy calculated as above and using Castigliano's theo-
rem, one can solve for the unknown—either the deflection or the indeterminate
reaction. We shall illustrate this through an example.

Example 6.8 A ring with a rectangular section is subjected to diametral
compression, as shown in Fig. 6.31. Determine the bending moment and stress
at point A of the inner radius across a section q. r1 and r2 are the inner and
external radii respectively.

Solution We observe that the deformation of the ring will be symmetrical about
the horizontal and vertical axes. Consequently, there will be no changes in the
slopes of the vertical and horizontal faces of the ring [Fig. 6.31(b)]. We can,
therefore, consider only a quadrant of the circle for the analysis. This is shown in
Fig. 6.31(c). M0 is the unknown internal moment. Its value can be determined from
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the condition that the change in the slope of this section is zero. We shall use
Castigliano’s theorem to determine this moment.

Across any section f, the moment is

M = M0 - 2
P  r0 (1 - cos f)

In addition, there is a normal force N and a shear force V, as shown in
Fig. 6.31(d). Their values are

0 cos and sin
2 2
P PN Vρ φ φ= − = −

The total strain energy for the quadrant from Eq. (6.49) is

 
/ 2 / 22 2 2 2

0 0
0 0

sin cos
8 8

P PU d d
AG AE

π πα φ φρ φ ρ φ= +∫ ∫

   
( )

2
/ 2 0 0

0

1 cos2
2

PM
dAeE

π ρ φ
φ

⎡ ⎤− −⎢ ⎥⎣ ⎦+ ∫

 
/2 0 0

0

(1 cos ) cos2
2

PM P
dAE

π ρ φ φ
φ

⎡ ⎤− −⎢ ⎥⎣ ⎦− ∫ (6.50a)

  
2 2

08 8 4
P P

AG AE
α π ρ
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(6.50b)
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M
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Fig. 6.31 Example 6.8
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In the above expression, M0 is still an unknown quantity. As the change in slope
at the section where M is applied is zero,

0

U
M
∂
∂

= ( )0 0
1 1 0

2 2 2
PM P

AeE AE
ππ ρ⎡ ⎤− − − =⎢ ⎥⎣ ⎦

\ M0 = 0

0

2 21
2

P eρ
π πρ

⎛ ⎞− +⎜ ⎟
⎝ ⎠

(6.51)

If we ignore the initial curvature of the member while calculating the strain energy,
then

/ 2 / 22 2 2 2
*

0 0
0 0

sin cos
8 8

P PU d dAG AE

π πα φ φ
ρ φ ρ φ= +∫ ∫

 
( )

2
/ 2 0 0

0

1 cos2
2

PM
dEI

π ρ φ
φ

⎡ ⎤− −⎢ ⎥⎣ ⎦+ ∫

and
/ 2

0 0 0
0 0

* 1 (1 cos ) 0
2

U PM d
M EI

π∂ ρ φ ρ φ
∂

⎡ ⎤= − − =⎢ ⎥⎣ ⎦∫

i.e. 0 0 0 0
2 2 2 2

P PM π πρ ρ− + =

\ ( )0
0

21
2

P
M

ρ
π

= −

i.e. same as given in Eq. (6.51) with e Æ 0 and r0 Æ •. Also, this moment is the
same as in Example 5.12, i.e. that of a thin ring.

With the value of M0 known, the bending moment at any section q is obtained as

M = M0 - 2
P  r0 (1 - cos q )

0

0

2 2cos2
P eρ

θ πρ π
⎛ ⎞= + −⎜ ⎟⎝ ⎠

The normal stress at A can be calculated using Eq. (6.35) and adding additional
stress due to the normal force N.

sA = ( )0

yM N
Ae Ar y

− ⋅ +
−

0

0 0

cos2 2cos
2 2
P Pye

Ae r y A
ρ θθ

πρ π
⎛ ⎞= − + − −⎜ ⎟ −⎝ ⎠

For point A, from Eqs (6.38) and (6.39b)

2 1 2 1
0 0 0 0

2 1 2 1
, ,

2 log ( / ) log ( / )
r r r rhy e r e r

r r r r
ρ ρ

− −
= − = = − = −
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Using these

( ) ( )
( )

0

0

cos 2 2 2
cos

2 2A
e h eP

A e h
ρ π θ

σ θ
π ρ

⎧ ⎫− + −⎪ ⎪= − +⎨ ⎬−⎪ ⎪⎩ ⎭

Example 6.9 A circular ring of rectangular section, shown in Fig. 6.31, is
subjected to diametral compression. Determine the change in the vertical
diameter.

Solution From Eq. (6.50b), the total energy for the complete ring is

( )2 2 22 2
0 0

0
0

1 34 232 32 2 2 4 4
M PP PU AG AE AeE

π ρα π π πρ
ρ

⎧ ⎡⎪= + + + −⎢⎨
⎢⎪ ⎣⎩

( ) ( )0
0 0 0

0
1 12 2 2 4

PPM P MA E
ρπ πρ ρ

⎫⎡ ⎤⎤− − − + − ⎬⎢ ⎥⎥⎦ ⎣ ⎦⎭

where M0 = 0

0

2 21
2

P eρ
π πρ

⎛ ⎞− +⎜ ⎟
⎝ ⎠

dv = U
P

∂
∂

Using the above expression for U (remembering that M is also a function of P),
and simplifying

0
0

1 2 24
16 2 8v

eP
AG AE
απ πδ ρ

π πρ
⎧ ⎛ ⎞= + − −⎨ ⎜ ⎟
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2
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1
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e
AEe
ρ π

ρ π πρ
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If e is small compared to r0, then

dv ª ( ) ( )3
0 0 0

0

2 22 1
4 8 8

P P P
AG AE AEe

α π ρ ρ ρπ π
π ρ π

+ − + −

2
0 0 00.488 0.15

4
P P P

AG AE AEe
α π ρ ρ ρ

= + +

If we assume that the ring is thin and the effect of the strain energies due to the
direct force and shear force are negligible, then the chage in the vertical diameter
is obtained as

( )3
0 2

4v
P
EI
ρ πδ

π
= −

This can be seen from Eq. (6.35). When r0 is large compared to y and
e Æ 0, Aer0 becomes equal to I according to flexure formula. Also, check with
Example 5.13.
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6.1 A rectangular wooden beam (Fig. 6.32) with a 10 cm ¥ 15 cm section is used
as a simply supported beam of 3 m span. It carries a uniformly distributed
load of 150 kgf (1470 N) per meter. The load acts in a plane making 30° with
the vertical. Calculate the maximum flexural stress at midspan and also locate
the neutral axis for the same section.

Ans. sA = 73 kgf/cm2 = 7126 kPa⎡
⎢⎣N.A cuts side AD such that DN = 1.0 cm ⎡

⎢⎣
6.2 A cantilever beam with a rectangular cross section, 5 cm ¥10 cm

which is built-in in a tilted position, carries an end load of 45 kgf
(441 N), as shown in Fig. 6.33. Calculate the maximum flexural stress
at the built-in end and also locate the neutral axis. The length of the
cantilever is 1.2 m.

3 m

y
3 0 ° W

D C

z
15 cm

10 cm

Fig. 6.32 Problem 6.1

A B

Ans. s = ±102.5 kgf/cm2 = 10052 kPa⎡
⎢⎣  N.A. is at 36.8° to the longerside ⎡

⎢⎣

6.3 A bar of angle section is bent by a couple M acting in the plane of the larger
side (Fig. 6.34). Find the centroidal principal axes Oy¢z¢ and the principal
moments of inertia. If M = 1.1550 kgf cm (1133 Nm), find the absolute maxi-
mum flexural stress in the section.

5 cm

10 cm

1

3

Fig. 6.33 Problem 6.2
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P P

a 2 a a

( a )

y

22.7 mm

80 mm
z CG

8 mm

P
( b )

Fig. 6.35 Problem 6.4

⎡
⎢
⎢
⎣

Ans. f = ±14° 32¢  

⎡
⎢
⎢
⎣

Iy¢ = 41.9 cm4 ; Iz¢ = 391 cm4

smax = 33600 kPa

⎡
⎢⎣

Ans. s = 914 kgf/cm2 (89640 kPa) ⎡
⎢⎣

f = 60° w.r.t. y axis
6.5 Determine the maximum absolute value of the normal stress due to bending and

the position of the neutral axis in the dangerous section of the beam. (Fig 6.36).

y ¢
y

12.7 mm

127 mm

z

f

o

z ¢
64 mm

12.7 mm

Fig. 6.34 Problem 6.3

6.4 Determine the maximum absolute value of the normal stress due
to bending and the position of the neutral axis in the dangerous section of
the beam shown in Fig.6.35. Given a = 0.5 m and P = 200 kgf
(1960 N). Section properties: equal legs 80 mm; centroid at 2.27 cm from the
base; principal moments of inertia 116 cm4, 30.3 cm4; Iz = 73.2 cm4.

P = 1000 kgf

2 m

4 m

30°

20 mm
140 mm

Fig. 6.36 Problem 6.5

120 mm

20 mm

⎡
⎢⎣

Ans. 1454 kgf/cm2 (142588 kPa) ⎡
⎢⎣

f = 60.1° with vertical
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6.6 For the cantilever shown in Fig. 6.37, determine the maximum absolute value
of the flexural stress and also locate the neutral axis at the section where
this maximum stress occurs. P = 200 kgf (1960 N).

[Ans. 2133 kgf/cm2 ( 209175 kPa)]

6.8 Figure 6.39 shows an unsymmetrical beam section composed of four
stringers A, B, C and D, each of equal area connected by a thin web. It
is assumed that the web will not carry any bending stress. The beam
section is subjected to the bending moments My and Mz, as indicated.
Calculate the stresses in members A and D. The area of each stringer
is 0.6 cm2.

⎡
⎢⎣

Ans. (sx)A = -464 kgf/cm2 (-45503 kPa) ⎡
⎢⎣

(sx)D = 448 kgf/cm2 (43934 kPa)

⎡
⎢⎣

Ans. 112.5 kgf/cm2 (11032 kPa) ⎡
⎢⎣

f = -25°36¢ with vertical
6.7 A cantilever beam (Fig. 6.38) of length L has right triangular section and

is loaded by P at the end. Solve for the stress at A near the built-in end.
P = 500 kgf (4900 N), h = 15 cm, b = 10 cm and L = 150 cm.

P

A

h

b

L

Fig. 6.38 Problem 6.7

P

20 cm

1.5 m 0.5 m
12 cm

Fig. 6.37 Problem 6.6

P
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6.9 In the above problem, if stringers C and D are made of magnesium alloy and
stringers A and B of stainless steel, what will be the bending stresses in
stringers A and D?

Est st = 2 ¥ 106 kgf/cm2 (196 ¥106 kPa)
Emg alloy = 0.4 ¥ 106 kgf/cm2 (39.2 ¥106 kPa)

Hint: Assume once again that sections that are plane before bending remain
plane after bending. Hence, to produce the same strain, the stress will be
proportional to E. Convert all the stringer areas into equivalent areas of
one material. For example, the areas of stringers C and D in equivalent
steel will be

mag mag

st st
, andC C D D

E E
A A A AE E= × = ×′ ′

The areas of A and B remain unaltered. Solve the problem in the usual
manner, using all equivalent steel stringers. Determine the stresses (sx)¢A
and (sx)¢D. Calculate the forces FA = (sx)¢A A¢A = (sx)¢A AA and
FD = (sx)¢D A¢D. Now, using the original areas calculate the stress as

(sx)A = (sx)¢A A¢A/AA = (sx)¢A
(sx)D = (sx)¢D A¢D /AD

⎡
⎢⎣

Ans. (sx)A = -480 kgf/cm2 (-47072 kPa) ⎡
⎢⎣

(sx)D = 425.6 kgf/cm2 (41737 kPa)
6.10 Show that the shear centre for the section shown in Fig. 6.40 is at

e = 4R/p measured from point 0.

e
oR

t

Fig. 6.40 Problem 6.10

12 cm B

20 m
My = 500 kgf cm

C

M
z 

= 
10

,0
00

 k
gf

 c
m

A

D

Fig. 6.39 Problem 6.8
8 cm
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[Ans. (a) 1.2 a, (b) 0.705 a (c) 0.76 a]
6.13 For the section given in Fig. 6.43, show that the shear centre is located at

a distance e from O such that

t

2 a

a
( a )

t

a /2
( b )

2a
t

(c )

Fig. 6.42 Problem 6.12

a

a

2t

a

t

p – a
p – a

o

R

e

Fig. 6.41 Problem 6.11

6.11 For the section shown in Fig. 6.41 show that the shear centre is at a
distance

e = 4(sin cos )
2 sin 2

R α α α
α α

−
−

from the centre of curvature O of the section.

6.12 Locate the shear centres from C.Gs for the sections shown in
Fig. 6.42(a), (b), and (c). In Fig. 6.42(b) the included angle is p /2.

b1
t b

e

x
R O

t

Fig. 6.43 Problem 6.13
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e = A
B

where

A = 12 + 6p ( )
2 32

1 1 1 16 12 3 4
b b b b bb b b

R R R R R R R
π

+ ⎛ ⎞ ⎛ ⎞+ + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and B = 3p + 12 
2

1 1 13 4
b b b b

R R R
+ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
Note: one can particularise this to the more familiar sections by putting
b or b1 or both equal to zero.

6.14 The open link shown in Fig. 6.44 Is loaded by forces P, each of which is
equal to 1500 kgf (14,700 N). Find the maximum tensile and compressive
stresses in the curved end at section AB.

⎡
⎢
⎢
⎣

Ans. (sx)A = 3591kgf/cm2 (352310 kPa)
(sx)B = -1796 kgf/cm2 (-176147 kPa)

⎡
⎢
⎢
⎣

6.15 A curved beam has an isosceles triangular section with the base of the
triangle in the concave face. Develop the expression for r0 in terms of the
altitude h of the triangle and R the radius of curvature of the centroidal
axis.

( )

2

0
3.

3 22 3 2 log 33

hAns r
R hR h hR h

⎡ ⎤
=⎢ ⎥+⎡ ⎤⎢ ⎥+ −⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦

6.16 Find the maximum tensile stress in the curved part of the hook shown in
Fig. 6.45. The web thickness is 1 cm.

[Ans. 3299 kgf/cm2 (328680 kPa)]

P
A B

3 cm

P
3 cm

Fig. 6.44 Problem 6.14
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6.17 Find the maximum tensile stress in the curved part of the hook shown in
Fig. 6.46.

[Ans. sx = 2277 kgf/cm2 (223300 kPa)]

4 cm

8 cm 8 cm

2700 kgf (26,460 N)

1 cm

Fig. 6.45 Problem 6.16

4 cm

Fig. 6.46 Problem 6.17

6 cm

2000 kgf (19,600 N)

45° 8 cm

6.18 Determine the ratio of the numerical value of smax and smin for a curved
bar of rectangular cross-section in pure bending if r0 = 5 cm and h = r2 -
r1 = 4 cm. [Ans.1.76]

6.19 Solve the previous problem if the bar is made of circular cross-
section. [Ans. 1.89]

6.20 Determine the dimensions b1 and b3 of an I-section shown in
Fig. 6.25, to make smax and smin numerically equal in pure bending.
The other dimensions are r1 = 3 cm; r3 = 4 cm; r4 = 6 cm; r2 = 7 cm; b2 =
1 cm; and b1 + b3 = 5 cm.

[Ans. b1 = 3.67 cm, b3 = 1.33 cm]
6.21 For the ring shown in Fig. 6.31 determine the changes in the horizontal

diameter.
Hint: Apply two horizontal fictitious forces Q along the diameter. Calcu-
late the total strain energy, Apply Castigliano’s theorem.

( ) ( )2 20
0

0

1 4 1 1 2 1. 2
2 2 2H

P
Ans e

A G E Ee
ρ αδ ρ

π ρ π
⎡ ⎤⎧ ⎫⎡ ⎤= − + − − − −⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦⎩ ⎭⎣ ⎦



7.1 INTRODUCTION
The torsion of circular shafts has been discussed in elementary strength of mate-
rials. There, we were able to obtain a solution to this problem under the assump-
tion that the cross-sections of the bar under torsion remain plane and rotate
without any distortion during twist. To observe this, consider the sheet shown in
Fig. 7.1(a), subject to shear stress t. The sheet deforms through an angle g, as
shown in Fig. 7.1(b).

t
BD

t

A

l

C A

lg
D

D ¢ t B ¢

t

g

C

B D

A C

t
(a) (b) (c)

Fig. 7.1 Deformation of a thin sheet under shear stress and the resulting tube

If the deformed sheet is now folded to form a tube, the sides AB and CD can be
joined without any discontinuity and this joined face will assume the form of a flat
helix, as shown in Fig. 7.1(c). If g  is the shear strain, then from Hooke’s law

g  = 
G
τ  (7.1)

where G is the shear modulus. Owing to this strain, point D moves to D¢ [Fig. 7.1(b)],
such that DD¢ = lg.  When the sheet is folded into a tube, the top face BD in
Fig. 7.1(c), rotates with respect to the bottom face through an angle

q* = 
l
r
γ

 (7.2)

Torsion7
CHAPTER

Chapter_07.pmd 7/3/2008, 8:09 AM230
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where r is the radius of the tube. Substituting for g from Eq. (7.1)

q* = l
G r
τ ⋅

or *
l
θ = Gr

τ  (7.3)

Also, the moment about the centre of the tube is
T = r ¥ 2prtt

or T = 
32 pIr t

r r
τπ τ

=

i.e .
p

T
I r

τ= (7.4)

where lp is the second polar moment of area.
Equations (7.3) and (7.4), therefore, give

*
p

GT
I r l

θτ= = (7.5)

the familiar equations from elementary strength of materials. Now one can stack a
series of tubes, one inside the other and for each tube, Eq. (7.5) would be valid.
These stacked tubes can form the section of a solid (or a hollow) shaft if the top

face of each tube has the same rotation Gq *, i.e. if *G
l
θ  is the same for each

tube. Therefore, the ratio r
τ  is the same for each tube, or in other words,t varies

linearly with r. Further, if T1 is the torque on the first tube with polar moment of
inertia Ip1, T2 the torque on the second tube with polar moment of inertia Ip2,
etc., then

1 2

1 2p p

T T
I I= = 1 2

1 2

. . .
. . . . . .

n n

pn p p pn p

T T T T T
I I I I I

+ + +
= = =

+ + +

where T is the total torque on the solid (or hollow) shaft and Ip is its polar moment
of inertia.

From the above analysis we observe that for circular shafts, the cross-sections
remain plane before and after, and there is no distortion of the section. But, for a
non-circular section, this will no longer be valid. In the case of circular shafts, the
shear stresses are perpendicular to a radial line and vary linearly with the radius.
We can see that both these cannot be valid for a non-circular shaft. For, if the
shear stress were always perpendicular to the radius OB [Fig. 7.2(a)], it would
have a component perpendicular to the boundary. This is obviously inadmissible
since the surface of the shaft is unloaded and a shear stress cannot cross an
unloaded boundary. Hence, at the boundary, the shear stress must be tangential
to the boundary. Further, by the same argument, the shear stress at the corner of
a rectangular section must be zero, since the shear stresses on both the vertical
faces are zero, i.e. both boundaries are unloaded boundaries [Fig. 7.2(b)].

In order to solve the torsion problem in general, we shall adopt St. Venant’s
semi-inverse method. According to this method, displacements ux, uy and uz are
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assumed. The strains are then determined from strain-displacement relations
[Eqs (2.18) and (2.19)]. Using Hooke’s law, the stresses are then determined.
Applying the equations of equilibrium and the appropriate boundary conditions,
we try to identify the problem for which the assumed displacements and the
associated stresses are solutions.

7.2 TORSION OF GENERAL PRISMATIC BARS–SOLID
 SECTIONS

We shall now consider the torsion of prismatic bars of any cross-section
twisted by couples at the ends. It is assumed here that the shaft does not
contain any holes parallel to the axis. In Sec. 7.12, multiply-connected sections
will be discussed.

On the basis of the solution of circular shafts, we assume that the cross-
sections rotate about an axis; the twist per unit length being q. A section
at distance z from the fixed end will, therefore, rotate through q z. A point P(x, y)
in this section will undergo a displacement rq z, as shown in Fig. 7.3. The compo-
nents of this displacement are

ux = -rqz sin b
uy = rqz cos b

B
O O

( a )

= 0

B

( b )

0 =
= 0

(c )

Fig. 7.2 (a) Figure to show that shear stress must be tangential to boundary;
(b) shear stress at the corner of a rectangular section being zero as

shown in (c).

y P ¢
b

uy rqz
P(x, y)

qz b
ux x

(c )

y

qz
P x

R

( b )

z
T

z

( a )

Fig. 7.3 Prismatic bar under torsion and geometry of deformation

r

O

x
y
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From Fig. 7.3(c )

sin b = y
r

and cos b = x
r

In addition to these x and y displacements, the point P may undergo a displace-
ment uz in z direction. This is called warping; we assume that the z displacement
is a function of only (x, y) and is independent of z. This means that warping is the
same for all normal cross-sections. Substituting for sin b and cos b, St. Venant’s
displacement components are

ux = –qyz (7.6)
uy = qxz
uz = qy(x, y)

(7.7)

y (x, y) is called the warping function. From these displacement components,
we can calculate the associated strain components. We have, from Eqs (2.18)
and (2.19),

exx = xu
x

∂
∂ , eyy = yu

y
∂
∂ , ezz = zu

z
∂
∂

gxy = , ,y yx xz z
yz zx

u uu uu u
y x z y z x

∂ ∂∂ ∂∂ ∂
γ γ

∂ ∂ ∂ ∂ ∂ ∂
+ = + = +

From Eqs (7.6) and (7.7)

exx = eyy = ezz = gxy = 0

gyz = q x
y

∂ψ
∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

(7.8)

gzx = q y
x

∂ψ
∂

⎛ ⎞−⎜ ⎟
⎝ ⎠

From Hooke’s law we have

sx = 
(1 ) (1 2 ) 1 xx

E Eν ε
ν ν ν

∆ +
+ − +

sy = 
(1 ) (1 2 ) 1 yy

E Eν ε
ν ν ν

∆ +
+ − +

sz = 
(1 ) (1 2 ) 1 zz

E Eν ε
ν ν ν

∆ +
+ − +

t xy = Gg xy, t yz = Gg yz, t zx = Gg zx

where D = exx + eyy + ezz

Substituting Eq. (7.8) in the above set

sx = s y = s z = t xy = 0

t yz = Gq x
y

∂ψ
∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

 (7.9)
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t zx = Gq y
x

∂ψ
∂

⎛ ⎞−⎜ ⎟
⎝ ⎠

The above stress components are the ones corresponding to the assumed dis-
placement components. These stress components should satisfy the equations of
equilibrium given by Eq. (1.65), i.e.

0xyx zx
x y z

∂τ∂σ ∂τ
∂ ∂ ∂

+ + =

0xy y yz

x y z
∂τ ∂σ ∂τ
∂ ∂ ∂

+ + = (7.10)

0yzzx z
x y z

∂τ∂τ ∂σ
∂ ∂ ∂

+ + =

Substituting the stress components, the first two equations are satisfied identi-
cally. From the third equation, we obtain

 
2 2

2 2 0G
x y

∂ ψ ∂ ψθ
∂ ∂

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠

i.e.
2 2

2
2 2 0

x y
∂ ψ ∂ ψ ψ
∂ ∂

+ = ∇ = (7.11)

Hence, the warping function y is harmonic (i.e. it satisfies the Laplace equation)
everywhere in region R [Fig. 7.3(b)].

Now let us consider the boundary conditions. If Fx, Fy and Fz are the compo-
nents of the stress on a plane with outward normal n (nx, ny, nz) at a point on the
surface [Fig. 7.4(a)], then from Eq. (1.9)

nxs x + ny t xy + nz t xz = Fx
nx t xy + ny s y + nz t yz = Fy (7.12)
nx t xz + ny t yz + nz s z = Fz

y

n(nx, ny, o)

x

( a )

y
n

( b )

Dy

Fig. 7.4 Cross-section of the bar and the boundary conditions

Ds

*y

x

R
*

–Dx

Ds

x

s
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In this case, there are no forces acting on the boundary and the normal n to the
surface is perpendicular to the z-axis, i.e. nz ∫ 0. Using the stress components from
Eq. (7.9), we find that the first two equations in the boundary conditions are
identically satisfied. The third equation yields

0x yG y n G x n
x y

∂ψ ∂ψθ θ
∂ ∂

⎛ ⎞ ⎛ ⎞− + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

From Fig. 7.4(b)

nx = cos (n, x) = dy
ds

, ny = cos (n, y) = – dx
ds

(7.13)

Substituting

0dy dxy x
x ds y ds

∂ψ ∂ψ
∂ ∂

⎛ ⎞ ⎛ ⎞− − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(7.14)

Therefore, each problem of torsion is reduced to the problem of finding a function
y which is harmonic, i.e. satisfies Eq. (7.11) in region R, and satisfies Eq. (7.14) on
boundary s.

Next, on the two end faces, the stresses as given by Eq. (7.9) must be equiva-
lent to the applied torque. In addition, the resultant forces in x and y directions
should vanish. The resultant force in x direction is

R
∫∫  tzx dx dy = Gq

R
y

x
∂ ψ
∂

⎛ ⎞−⎜ ⎟
⎝ ⎠

∫∫  dx dy  (7.15)

The right-hand side integrand can be written by adding — 2y as
2 2

2 2y y x
x x x y

∂ ψ ∂ψ ∂ ψ ∂ ψ
∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞ ⎛ ⎞− = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
since — 2y = 0, according to Eq. (7.11). Further,

2 2

2 2y x x y
x x xx y

∂ψ ∂ ψ ∂ ψ ∂ψ∂
∂ ∂ ∂∂ ∂

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞− + + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
x xy y

∂ψ∂
∂ ∂

⎡ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
Hence, Eq. (7.15) becomes

zx
R R

dx dy G x y x x dx dy
x x y y

∂ ψ ∂ψ∂ ∂τ θ
∂ ∂ ∂ ∂

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
∫∫ ∫∫

Using Gauss’ theorem, the above surface integral can be converted into a line
integral. Thus,

zx
R

dx dy Gτ θ=∫∫ Ú
S

x yx y n x x n dsx y
∂ψ ∂ψ
∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞− + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= Gq Ú
S

dy dxx y x dsx ds y ds
∂ψ ∂ψ
∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞− + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
= 0
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according to the boundary condition Eq. (7.14). Similarly, we can show that

R
∫∫ t yz dx dy = 0

Now coming to the moment, referring to Fig. 7.4(a) and Eq. (7.9)
T =

R
∫∫ (tyz x – tzx y) dx dy

= 2 2

R
G x y x y dx dy

y x
∂ψ ∂ψθ
∂ ∂

⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

∫∫

Writing J for the integral

J = 2 2

R
x y x y

y x
∂ψ ∂ψ
∂ ∂

⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

∫∫  dx dy  (7.16)

we have T = GJq (7.17)
The above equation shows that the torque T is proportional to the angle of twist
per unit length with a proportionality constant GJ, which is usually called the
torsional rigidity of the shaft. For a circular cross-section, the quantity J reduces
to the familiar polar moment of inertia. For non-circular shafts, the product GJ is
retained as the torsional rigidity.

7.3 ALTERNATIVE APPROACH
An alternative approach proposed by Prandtl leads to a simpler boundary condi-
tion as compared to Eq. (7.14). In this method, the principal unknowns are the
stress components rather than the displacement components as in the previous
approach. Based on the result of the torsion of the circular-shaft, let the non-
vanishing stress components be tzx and tyz. The remaining stress components sx,
sy, sz and txy are assumed to be zero. In order to satisfy the equations of equilib-
rium we should have

zx
z

∂τ
∂

= 0, 0, 0yz yzzx
z x y

∂τ ∂τ∂τ
∂ ∂ ∂

= + =  (7.18)

If it is assumed that in the case of pure torsion, the stresses are the same in every
normal cross-section, i.e. independent of z, then the first two conditions above are
automatically satisfied. In order to satisfy the third condition, we assume a function
f (x, y) called the stress function, such that

tzx = , yzy x
∂φ ∂φτ
∂ ∂

= −  (7.19)

With this stress function (called Prandtl’s torsion stress function), the third condition
is also satisfied. The assumed stress components, if they are to be proper elasticity
solutions, have to satisfy the compatibility conditions. We can substitute these
directly into the stress equations of compatibility. Alternatively, we can determine the
strains corresponding to the assumed stresses and then apply the strain compatibility
conditions given by Eq. (2.56). The strain components from Hooke's law are

exx = 0, eyy = 0, ezz = 0 (7.20)
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gxy = 0, gyz = 1
G

 tyz, gzx = 1
G

 tzx

Substituting from Eq. (7.19)

gyz = – 1
G x

φ∂
∂

, and gzx = 1
G y

φ∂
∂

From Eq. (2.56), the non-vanishing strain compatibility conditions are (observe
that f is independent of z)

yz zx
x x y

∂γ ∂γ∂
∂ ∂ ∂

⎛ ⎞
− +⎜ ⎟
⎝ ⎠

 = 0

yz zx
y x y

∂γ ∂γ∂
∂ ∂ ∂

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 = 0

i.e.
2 2 2 2

2 2 2 20; 0
x yx y x y

∂ φ ∂ φ ∂ φ ∂ φ∂ ∂
∂ ∂∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
+ = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Hence,
2 2

2 2x y
∂ φ ∂ φ
∂ ∂

+  = —2f = a constant F (7.21)

The stress function, therefore, should satisfy Poisson's equation. The constant F
is yet unknown. Next, we consider the boundary conditions [Eq. (7.12)]. The first
two of these are identically satisfied. The third equation gives

0x yn n
y x

∂φ ∂φ
∂ ∂

− =

Substituting for nx and ny from Eq. (7.13)

0dy dx
y ds x ds

∂φ ∂φ
∂ ∂

+ =

i.e. d
ds
φ  = 0 (7.22)

Therefore, f is constant around the boundary. Since the stress components de-
pend only on the differentials of f, for a simply connected region, no loss of
generality is involved in assuming

f = 0 on s (7.23)
For a multi-connected region R (i.e. a shaft having holes), certain additional con-
ditions of compatibility are imposed. This will be discussed in Sec. 7.9.

On the two end faces, the resultants in x and y directions should vanish, and
the moment about O should be equal to the applied torque T. The resultant in x
direction is

R
∫∫ tzx dx dy =

R y
∂φ
∂∫∫  dx dy
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= dx
y

∂φ
∂∫ ∫ dy

= 0
since f is constant around the boundary. Similarly, the resultant in y direction
also vanishes. Regarding the moment, from Fig. 7.4(a)

T = 
R
∫∫ (xtzy – ytzx) dx dy

= –
R

x y
x y

∂φ ∂φ
∂ ∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

∫∫  dx dy

= – 
R R

x dx dy y dx dy
x y

∂φ ∂φ
∂ ∂

−∫∫ ∫∫

Integrating by parts and observing that f = 0 of the boundary, we find that each
integral gives

∫∫ f dx dy

Thus T = 2 ∫∫ f dx dy (7.24)

Hence, we observe that half the torque is due to tzx and the other half to tyz.
Thus, all differential equations and boundary conditions are satisfied if the

stress function f obeys Eqs (7.21), (7.23) and (7.24). But there remains an indeter-
minate constant in Eq. (7.21). To determine this, we observe from Eq. (7.19)

2 2

2 2x y
∂ φ ∂ φ
∂ ∂

+ yzzx
y x

∂τ∂τ
∂ ∂

= −

= G yzzx
y x

∂γ∂γ
∂ ∂

⎛ ⎞
−⎜ ⎟

⎝ ⎠

= G 
yx z zuu u u

y z x x z y
∂∂ ∂ ∂∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
⎡ ⎤⎛ ⎞⎛ ⎞+ − +⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

= G 
yx uu

z y x
∂∂∂

∂ ∂ ∂
⎛ ⎞

−⎜ ⎟
⎝ ⎠

= G z
∂
∂  (–2wz)

where wz is the rotation of the element at (x, y) about the z-axis [Eq. (2.25), Sec. 2.8].
(∂/∂z) (wz) is the rotation per unit length. In this chapter, we have termed it as
twist per unit length and denoted it by q. Hence,

2 2

2 2x y
∂ φ ∂ φ
∂ ∂

+  = —2f = –2Gq (7.25)
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According to Eq. (7.19),

tzx = 
y

∂φ
∂

, tyz = –
x

∂φ
∂

That is, the shear acting in the x direction is equal to the slope of the stress
function f (x, y) in the y direction. The shear stress acting in the y direction
is equal to the negative of the slope of the stress function in the x direction. This
condition may be generalised to determine the shear stress in any direction, as
follows. Consider a line of constant f in the cross-section of the bar. Let s be the
contour line of f = constant [Fig. 7.5(a)] along this contour

y

n

(n, x)

x

s

( a )

Dy
Dn

–Dx

* Ds *

(b)

tyz

ns

tzx

(c )

contour line
f = const.

Fig. 7.5 Cross-section of the bar and contour lines of f

d
ds
φ  = 0 (7.26a)

i.e. dydx
dx ds dy ds
∂φ ∂φ+  = 0 (7.26b)

or –t yz zx
dydx

ds ds
τ+  = 0 (7.26c)

From Fig. 7.5(b)

– dx
ds  = cos (n, y) = dy

dn

and – dy
ds  = cos (n, x) = dx

dn
where n is the outward drawn normal. Therefore, Eq. (7.26c) becomes

tyz cos (n, y) + tzx cos (n, x) = 0 (7.27a)
From Fig. 7.5(c), the expression on the left-hand side is equal to tzn, the compo-
nent of resultant shear in the direction n.
Hence, tzn = 0 (7.27b)

This means that the resultant shear at any point is along the contour line of
f = constant at that point. These contour lines are called lines of shearing stress.
The resultant shearing stress is therefore

tzs = tyz sin (n, y) – tzx sin (n, x)
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= tyz cos (n, x) – tzx cos (n, y)

= tyz zx
dydx

dn dn
τ−

= – dydx
x dn y dn
φ φ∂ ∂−
∂ ∂

(7.28)

or tzs = –
n

∂φ
∂

Thus, the magnitude of the shearing stress at a point is given by the magnitude of
the slope of f (x, y) measured normal to the tangent line, i.e. normal to the contour
line at the concerned point. The above points are very important in the analysis of
a torsion problem by membrane analogy, discussed in Sec. 7.7.

7.4 TORSION OF CIRCULAR AND ELLIPTICAL BARS
(i) The simplest solution to the Laplace equation (Eq. 7.11) is

y = constant = c (7.29)
With y = c, the boundary condition given by Eq. (7.14) becomes

– y dy dxx
ds ds

− = 0

or
2 2

2
x yd

ds
+ = 0

i.e. x2 + y2 = constant
where (x, y) are the coordinates of any point on the boundary. Hence, the bound-
ary is a circle. From Eq. (7.7), uz = qc. From Eq. (7.16)

J = 
R
∫∫ (x2 + y2) dx dy = Ip

the polar moment of inertia for the section. Hence, from Eq. (7.17)
T = GIpq

or q = 
p

T
GI

Therefore, uz = qc = 
p

Tc
GI

which is a constant. Since the fixed end has zero uz at least at one point, uz is zero
at every cross-section (other than rigid body displacement). Thus, the cross-
section does not warp. The shear stresses are given by Eq. (7.9) as

tyz = Gq x = 
p

Tx
I

tzx = – Gq y = –
p

Ty
I
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Therefore, the direction of the resultant shear t is such that, from Fig. 7.6

tan a = zy

zx

G x x
G y y

τ θ
τ θ

= − = −

y

x

r
a

a

y

x

Fig. 7.6 Torsion of a circular bar

Hence, the resultant shear is perpendicular to the radius. Further

t 2 = 2 2
yz zxτ τ+ = 

2 2 2

2
( )

p

T x y
I
+

or t = 
p

Tr
I

where r is the radial distance of the point (x, y). Thus, all the results of the
elementary analysis are justified.
(ii) The next case in the order of simplicity is to assume that

y = Axy (7.30)
where A is a constant. This also satisfies the Laplace equation. The boundary
condition, Eq. (7.14) gives,

(Ay – y) dy
ds

 – (Ax + x) dx
ds

 = 0

or y (A – 1) dy
ds

 – x (A + 1) dx
ds

 = 0

i.e. (A + 1) 2x dx
ds

 – (A – 1) 2y dy
ds

 = 0

or d
ds

⎡⎣(A + 1) x2 – (A – 1) y2⎤⎦ = 0

which on integration, yields
(1 + A) x2 (1 – A) y2 = constant (7.31)

This is of the form
22

2 2
yx

a b
+  = 1
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These two are identical if
2

2
1
1

a A
Ab

−=
+

or A = 
2 2

2 2
b a
b a

−
+

Therefore, the function

y =
2 2

2 2
b a
b a

−
+

 xy

represents the warping function for an elliptic cylinder with semi-axes a and b
under torsion. The value of J, as given in Eq. (7.16), is

J = 
R
∫∫ (x2 + y2 + Ax2 – Ay2) dx dy

= (A + 1) ∫∫  x2 dx dy + (1 – A) ∫∫ y2 dx dy

= (A + 1) Iy + (1 – A) Ix

Substituting Ix = 
3

4
abπ  and Iy = 

3

4
a bπ , one gets

J = 
3 3

2 2
a b

a b
π
+

Hence, from Eq. (7.17)

T = GJq = Gq 
3 3

2 2
a b

a b
π
+

or q = 
2 2

3 3
a bT

G a bπ
+ (7.32)

The shearing stresses are given by Eq. (7.9) as

t yz = Gq x
dy
∂ψ⎛ ⎞+⎜ ⎟
⎝ ⎠

= T
2 2 2 2

3 3 2 2 1a b b a
a b b aπ

⎛ ⎞+ −
+⎜ ⎟⎜ ⎟+⎝ ⎠

 x

= 3
2Tx
a bπ

(7.33a)

and similarly,

t zx = 
3

2Ty
abπ

(7.33b)
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The resultant shearing stress at any point (x, y) is

t  = 
1/ 2 1/ 22 2 4 2 4 2

3 3
2

yz zx
T b x a y

a b
τ τ

π
⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦ (7.33c)

To determine where the maximum shear stress occurs, we substitute for x2 from
22

2 2
yx

a b
+  = 1, or x2 = a2 

2

21 y
b

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

giving t = 3 3
2T
a bπ

 [a2b4 + a2 (a2 – b2) y2]1/2

Since all terms under the radical (power 1/2) are positive, the maximum shear
stress occurs when y is maximum, i.e. when y = b. Thus, tmax occurs at the ends of
the minor axis and its value is

t max = 4 2 1/ 2
3 3 2

2 2( )T Ta b
a b abπ π

= (7.34)

With the warping function known, the displacement uz can easily be determined.
We have from Eq. (7.7)

  uz = qy = 
2 2

3 3
( )T b a

a b Gπ
−  xy

The contour lines giving uz = con-
stant are the hyperbolas shown in
Fig. 7.7. For a torque T as shown,
the convex portions of the cross-
section, i.e. where uz is positive, are
indicated by solid lines, and the
concave portions or where the sur-
face is depressed, are shown by dot-
ted lines. If the ends are free, there
are no normal stresses. However, if
one end is built-in, the warping is

depressed
uz negative

elevated
uz positive

Fig. 7.7 Cross-section of an elliptical
bar and contour lines
of uz

a

b

prevented at that end and consequently, normal stresses are induced which are
positive in one quadrant and negative in another. These are similar to bending
stresses and are, therefore, called the bending stresses induced because of torsion.

7.5 TORSION OF EQUILATERAL TRIANGULAR BAR
Consider the warping function

y = A(y3 – 3x2y) (7.35)
This satisfies the Laplace equation, which can easily be verified. The boundary
condition given by Eq. (7.14) yields

(–6Axy – y) dy
ds

 – (3Ay2 – 3Ax2 + x) dx
ds

 = 0
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or y(6Ax + 1) dy
ds

 + (3Ay2 – 3Ax2 + x) dx
ds

 = 0

i.e. d
ds ( )2 3 2 21 13

2 2
Axy Ax x y− + +  = 0

Therefore,

A(3xy2 – x3) + 1
2  x2 + 1

2  y2 = b (7.36)

where b is a constant. If we put A = – 1
6a

 and b = +
22

3
a ,

Eq. (7.36) becomes

– 1
6a

 (3xy2 – x3) + 1
2

 (x2 + y2) – 2
3

 a2 = 0

or (x – 3 y + 2a) (x + 3 y + 2a) (x – a) = 0 (7.37)
Equation (7.37) is the product of the three equations of the sides of the triangle
shown in Fig. 7.8. The equations of the boundary lines are

x – a = 0 on CD

x – 3 y + 2a = 0 on BC

x + 3 y + 2a = 0 on BD
From Eq. (7.16)

J = ( ) ( )2 2 2 23 3 6
R

x y Ax y x Ay xy dx dy⎡ ⎤+ + − − −⎣ ⎦∫∫

= ( ) ( )3 2 2 2 2
0 3 2 3 3 6a a

y ady x y Ax y x Ay xy dx
− −

⎡ ⎤+ + − − −⎣ ⎦∫ ∫

+ ( ) ( )2 2 2 2
3 3 2 3 3 6a a
a y ady x y Ax y x Ay xy dx− − −

⎡ ⎤+ + − − −⎣ ⎦∫ ∫

= 49 3 3
5 5 pa I= (7.38)

y C

3 a

xB

D
2 a a

o

Fig. 7.8 Cross-section of a triangular bar and plot of tyz along x-axis
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Therefore,

q = 5
3 P

T T
GJ GI

= (7.39)

Ip is the polar moment of inertia about 0.
The stress components are

t yz = G x
y

∂ψθ
∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

= ( )2 23 3G Ay Ax xθ − +

= ( )2 2 2
2
G x y ax

a
θ − + (7.40)

and t zx = G y
y

∂ψθ
∂

⎛ ⎞−⎜ ⎟
⎝ ⎠

= ( )G y x a
a
θ

− (7.41)

The largest shear stress occurs at the middle of the sides of the triangle, with a
value

tmax = 3
2

G aθ (7.42)

At the corners of the triangle, the shear stresses are zero. Along the x-axis, tzx = 0
and the variation of tyz is shown in Fig. 7.8. tyz is also zero at the origin 0.

7.6 TORSION OF RECTANGULAR BARS
The torsion problem of rectangular bars is a bit more involved compared to those
of elliptical and triangular bars. We shall indicate only the method of approach
without going into the details. Let the sides of the rectangular cross-section be 2a
and 2b with the origin at the centre, as shown in Fig. 7.9(a).

y

C B

2 b
o x

D 2 a A

( a )

y T

2 a

convex

x

concave

2a

T ( b )

Fig. 7.9 (a) Cross-section of a rectangular bar (b) Warping of a square section
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Our equations are, as before,
2 2

2 2x y
∂ ψ ∂ ψ
∂ ∂

+  = 0

over the whole region R of the rectangle, and

0x yy n x n
x y

∂ψ ∂ψ
∂ ∂

⎛ ⎞⎛ ⎞− + + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

on the boundary. Now on the boundary lines x = ±a or AB and CD, we have nx = ±1
and ny = 0. On the boundary lines BC and AD, we have nx = 0 and ny = ±1. Hence,
the boundary conditions become

x
∂ψ
∂

 = y on x = ±a

y
∂ψ
∂

 = –x on y = ±b

These boundary conditions can be transformed into more convenient forms if we
introduce a new function y1, such that

1xyψ ψ= −

In terms of y1, the governing equation is
2 2

1 1
2 2 0

x y
∂ ψ ∂ ψ
∂ ∂

+ =

over region R, and the boundary conditions become

1
x

∂ψ
∂

 = 0 on x = ±a

1
y

∂ψ
∂

 = 2x on y = ±b

It is assumed that the solution is expressed in the form of infinite series

y = ( ) ( )
0

n n
n

X x Y y
∞

=
∑

where Xn and Yn are respectively functions of x alone and y alone. Substitution
into the Laplace equation for y1 yields two linear ordinary differential equations
with constant coefficients. Further details of the solution can be obtained by
referring to books on theory of elasticity. The final results which are important are
as follows:

The function J is given by
J = Ka3b

For various b/a ratios, the corresponding values of K are given in Table 7.1.
Assuming that b > a, it is shown in the detailed analysis that the maximum
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Table 7.1

b/a K K1 K2

1 2.250 1.350 0.600
1.2 2.656 1.518 0.571
1.5 3.136 1.696 0.541
2.0 3.664 1.860 0.508
2.5 3.984 1.936 0.484
3.0 4.208 1.970 0.468
4.0 4.496 1.994 0.443
5.0 4.656 1.998 0.430

10.0 4.992 2.000 0.401
• 5.328 2.000 0.375

shearing stress is at the mid-points of the long sides x = ±a of the rectangle. On
these sides

tzx = 0 and tmax = K1 
Ta
J

The values of K1 for various values of b/a are given in Table 7.1. Substituting
for J, the above expression can be written as

tmax = K2 2
Ta
a b

where K2 is another numerical factor, as given in Table 7.1. For a square section,
i.e. b/a = 1, the warping is as shown in Fig. 7.9 (b). The zones where uz is
positive are shown by solid lines and the zones where uz is negative are shown
by dotted lines.

Empirical Formula for Squatty Sections

Equation (7.32), which is applicable to an elliptical section, can be written as
3 3 4

2 2 2
1

4 p

T a b GAG
Ia b

π
θ π
= =

+

where A = pab is the area of the ellipse, and Ip = 
2 2( )

4
a b+ A is the polar moment

of inertia. This formula is applicable to a large number of squatty sections with an
error not exceeding 10%. If 4p 2 is replaced by 40, the mean error becomes less
than 8% for many sections. Hence,

4

40 p

T GA
Iθ

=

is an approximate formula that can be applied to many sections other than elon-
gated or narrow sections (see Secs 7.10 and 7.11).
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7.7 MEMBRANE ANALOGY
From the examples worked out in the previous sections, it becomes evident that
for bars with more complicated cross-sectional shapes, analytical solutions tend
to become more involved and difficult. In such situations, it is desirable to
resort to other techniques—experimental or otherwise. The membrane analogy
introduced by Prandtl has proved very valuable in this regard. Let a thin homo-
geneous membrane like a thin rubber sheet be stretched with uniform tension
and fixed at its edge, which is a given curve (the cross-section of the shaft) in
the xy-plane (Fig. 7.10).
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Fig. 7.10 Stretching of a membrane
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When the membrane is subjected to a uniform lateral pressure p, it undergoes a
small displacement z where z is a function of x and y. Consider the equilibrium of an
infinitesimal element ABCD of the membrane after deformation. Let F be the uniform
tension per unit length of the membrane. The value of the initial tension F is large
enough to ignore its change when the membrane is blown up by the small pressure p.
On face AD, the force acting is FDy. This is inclined at an angle b to the x-axis. tan b

is the slope of the face AB and is equal to ∂ z/∂ x. Hence, the component of FDy in z

direction is ( )zF y
x
∂− ∆
∂

 since sin b ª tan ª b for small values of b. The force on face

BC is also F Dy but is inclined at an angle (b + Db) to the x-axis. Its slope is therefore

( )z z x
x x x

∂ ∂ ∂
∂ ∂ ∂

+ ∆

and the component of the force in z direction is

FDy ( )z z x
x x x

∂ ∂ ∂
∂ ∂ ∂
⎡ ⎤+ ∆⎢ ⎥⎣ ⎦

Similarly, the components of the forces FDy acting on faces AB and CD are

– FD x andz z zF x yy y y y
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞∆ + ∆⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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Therefore, the resultant force in z direction due to tension F is
2

2
z z z zF y F y x F xx x yx

∂ ∂ ∂ ∂
∂ ∂ ∂∂

⎡ ⎤
− ∆ + ∆ + ∆ − ∆⎢ ⎥

⎣ ⎦

+ 
2

2
z zF x y
y y

∂ ∂
∂ ∂

⎡ ⎤
∆ + ∆⎢ ⎥

⎣ ⎦

2 2

2 2
z zF x y

x y
∂ ∂
∂ ∂

⎛ ⎞
= + ∆ ∆⎜ ⎟⎝ ⎠

The force p acting upward on the membrane element ABCD is p D x Dy, assuming
that the membrane deflection is small. For equilibrium, therefore

2 2

2 2
z zF p

x y
∂ ∂
∂ ∂

⎛ ⎞
+ = −⎜ ⎟⎜ ⎟

⎝ ⎠

or
2 2

2 2
pz z
Fx y

∂ ∂
∂ ∂

+ = − (7.43)

Now, if we adjust the membrane tension F or the air pressure p such that p/F
becomes numerically equal to 2Gq, then Eq. (7.43) of the membrane becomes
identical to Eq. (7.25) of the torsion stress function f. Further, if the membrane
height z remains zero at the boundary contour of the section, then the height z of
the membrane becomes numerically equal to the torsion stress function [Eq. (7.23)].
The slopes of the membrane are then equal to the shear stresses and these are in
a direction perpendicular to that of the slope. The twisting moment is numerically
equivalent to twice the volume under the membrane [Eq. (7.24)].

7.8 TORSION OF THIN-WALLED TUBES
Consider a thin-walled tube subjected to torsion. The thickness of the tube need
not be uniform (Fig. 7.11). Since the thickness is small and the boundaries are free,
the shear stresses will be essentially parallel to the boundary. Let t be the magni-
tude of the shear stress and t the thickness.

Consider the equilibrium of an element of length Dl, as shown. The areas of cut
faces AB and CD are respectively t1 Dl and t2 Dl. The shear stresses (complemen-
tary shears) are t1 and t2. For equilibrium in z direction we should have

1 1 2 2 0t l t lτ τ− ∆ + ∆ =

A B

C
D

A
Dl

t 1

t1

t2

B

DC

Fig. 7.11 Torsion of a thin-walled tube

Z
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or 1 1 2 2 , a constantt t qτ τ= =  (7.44)
Hence, the quantity t t is a constant. This is called the shear flow q, since the
equation is similar to the flow of an incompressible liquid in a tube of varying
area. For continuity, we should have V1A1 = V2A2, where A is the area and V the
corresponding velocity of the fluid there.

Consider next the torque of the shear about point O [Fig. 7.12(a)].

The force acting on an elementary length Ds of the tube is
DF = t s q sτ ∆ = ∆

The moment arm about O is h and hence, the torque is
DT = 2q sh q A∆ = ∆

where DA is the area of the triangle enclosed at O by the base s. Hence, the total
torque is

T = 2 2q A qAΣ ∆ = (7.45)
Where A is the area enclosed by the centre line of the tube. Equation (7.45) is
generally known as the Bredt–Batho formula.

To determine the twist of the tube, we make use of Castigliano’s theorem.
Referring to Fig. 7.12(b), the shear force on the element is t t Ds = q Ds. Because
of shear strain g , the force does work equal to

DU = 1 ( )2 t sτ δ∆

= 1 ( )2 t s lτ γ∆ ∆

= 1 ( )2 t s l G
ττ ∆ ∆

= 
2

2
q l s

G t
∆ ∆

(7.46)

= 
2

28
T l s

tA G
∆ ∆

 (7.47)

DF = q Ds

Ds

h
O

( a )

Dl t

Fig. 7.12 Cross-section of a thin-walled tube and torque due to shear
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