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Points, Directions, and Planes in the Unit Cell

Miller indices - A shorthand notation to describe certain
crystallographic directions and planes in a material.
Denoted by [ ] brackets. A negative number is represented
by a bar over the number.

Directions of a form - Crystallographic directions that all
have the same characteristics, although their “sense” is
different. Denoted by < > brackets.

Repeat distance - The distance from one lattice point to the
adjacent lattice point along a direction.

Linear density - The number of lattice points per unit length
along a direction.

Packing fraction - The fraction of a direction (linear-packing
fraction) or a plane (planar-packing factor) that is actually
covered by atoms or ions.



Points, Directions, and Planes in the Unit Cell

Coordinates of Points  We can locate certain points, such as atom
positions, in the lattice or umit cell by constructing the right-handed coordinate system
in Figure 3-14. Distance 18 measured in terms of the number of lattice parameters we
must move 1n each of the x, y, and z coordinates to get from the ongin to the point in
question. The coordinates are written as the three distances, with commas separating the
numbers.

Directions in the Unit Cell  Certain directions in the unit cell are of par-

ticular importance. Miller indices for directions are the shorthand notation used to describe
these directions. The procedure for finding the Miller indices for directions 15 as follows:

I. Using a right-handed coordinate system, determine the coordinates of two points
that lie on the direction.

2. Subtract the coordinates of the “tail” pomt from the coordinates of the “head”
point to obtain the number of lattice parameters traveled in the direction of each

axis of the coordinate system.



Z Figure 3-14

0.0.1 Coordinates of selected points in the unit cell. The number
J refers to the distance from the origin in terms of lattice
L 1,1 parameters.
0, 0,0 .y
]
5.1,0
1,0,0 1, 1,0

3. Clear fractions and, or reduce the results obtained from the subtraction to lowest
Integers.

4. Enclose the numbers in square brackets [ ]. If a negative sign 15 produced, repre-
sent the negative sign with a bar over the number.



Determine the Miller indices of directions 4, B, and C in Figure 3-15.

SOLUTION

Direction .4

1. Two pointsare 1,0,0, and 0, 0, O

2. 1,0,0—-0,0,0=1,0,0

3. No fractions to clear or integers to reduce
4. [100]

Direction B

1. Two pointsare 1, 1. 1 and 0, 0, 0
2.1,1,1—0,0,0=1,1,1

3. No fractions to clear or integers to reduce
4. [111]

Z Figure 3-15
0.0. 1 [:ry‘stallﬂgraphic directions and coordinates

"*\ 1. 1.1

(for Example 3-7).




Direction C
1. Two points are 0, 0, 1 and %._ 1.0
2.0,0,1 —5,1,0=—3,—1,1

Several points should be noted about the use of Miller indices for directions:

1. Because directions are vectors, a direction and its negative are not identi-
cal; [100] 1s not equal to [100]. They represent the same line, but opposite
directions.

A direction and its multiple are identical; [100] is the same direction as [200].

bad [

. Certain groups of directions are equivalent; they have their particular indices
because of the way we construct the coordinates. For example, in a cubic system,
a [100] direction is a [010] direction if we redefine the coordinate system as shown
in Figure 3-16. We may refer to groups of equivalent directions as directions of
a form or family. The special brackets () are used to indicate this collection of
directions. All of the directions of the form (110} are listed in Table 3-3.
We expect a material to have the same properties in each of these twelve direc-
tions of the form (110}.
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Figure 3-16  Equivalency of crystallographic directions of a form in cubic systems.



Significance of Crystallographic Directions  Crystallographic
directions are used to indicate a particular orientation of a single crystal or of an orented
polycrystalline material. Knowing how to describe these can be useful in many applications.
Metals deform more easily, for example, in directions along which atoms are in closest con-
tact. Another real-world example is the dependence of the magnetic properties of iron and
other magnetic materials on the crystallographic directions. It is much easier to magnetize
iron in the [100] direction compared to the [111] or [110] directions. This 1s why the grains
in Fe-5i steels used in magnetic applications (e.g., transformer cores) are oriented in the [100]
or equivalent directions.

TABLE 3-3 W Directions of the form (110 in cubic systems

([1101[T10]
[1011[107]
[0111[011] ! I
[110][110]
[10T1[T01]
| [01T1[0T1]

| [100] [010]

{110) = 4




Repeat Distance, Linear Density, and Packing Fraction

Another way of characterizing directions 15 by the repeat distance or the distance between
lattice points along the direction. For example, we could examine the [110] direction in an
FCC umit cell (Figure 3-17): 1f we start at the 0, 0, 0 location, the next lattice point 1 at the
center of a face, ora 1/2, 1/2, 0 site. The distance between lattice points 15 therefore one-half
of the face diagonal, Dr%vﬁa{,. In copper, which has a lattice parameter of 0.3615 nm, the
repeat distance 15 0.2556 nm.

The linear density 1s the number of lattice points per unit length along the direc-

tion. In copper, there are two repeat distances along the [110] direction in each umt cell;
since this distance 18 /2y = 0.5112 nm, then

2 repeat distances
0.5112 nm

Linear density = = 3.91 lattice points/nm

Note that the linear density is also the reciprocal of the repeat distance.



Finally, we can compute the packing fraction of a particular direction, or the frac-
tion actually covered by atoms. For copper, in which one atom is located at each lattice
point, this fraction 15 equal to the product of the linear density and twice the atomic radius.
For the [110] direction in FCC copper, the atomic radius r = v 2ay/4 = 0.1278 nm.
Therefore, the packing fraction is

Packing fraction = ( linear density)(2r)
= (3.91)2)0.1278)
= (1.0)

Z Figure 3-17

Repeat distance = %ﬁ ay Determining the repeat distance, linear density,
and packing fraction for a [110] direction in FCC
COpper.

y

X

[110]

Atoms touch along the [110] direction, since the [110] direction is close-packed in FCC
metals.



Planes in the Unit Cell certain planes of atoms in a crystal also carry
particular significance. For example, metals deform along planes of atoms that are most
tightly packed together. The surface energy of different faces of a crystal depends upon
the particular crystallographic planes. This becomes important in crystal growth. In thin
film growth of certain electronic matenals (e.g., S1 or GaAs), we need to be sure the sub-
strate 15 onented 1n such a way that the thin film can grow on a particular crystallographic
plane.

Miller indices are used as a shorthand notation to identify these important planes,
as described in the following procedure.

1. Identify the points at which the plane intercepts the x, y, and z coordinates 1n
terms of the number of lattice parameters. If the plane passes through the on-
gin, the origin of the coordinate system must be moved to that of an adjacent
unit cell.

2. Take reciprocals of these mtercepts.
3. Clear fractions but do not reduce to lowest integers.

4. Enclose the resulting numbers in parentheses (). Again, negative numbers should
be written with a bar over the number.



Determine the Miller indices of planes 4, B, and Cin Figure 3-18.

SOLUTION

Plane 4

1. x=1,y=1,z=1
1

2. —= 1._l = l,l
X ¥ z

3. No fractions to clear

4. (111)

LY

Figure 3-18
Crystallographic planes and intercepts (for
Example 3-8).



Plane B

I. The plane never intercepts the zaxis, sox=1,y=2,and z=m
1 E ¥ 1

2.—=1l—==—=—=10
' 5
_ i 1 1
3. Clear frm:tmns:? = 2ﬁ¥ =1—=0
4. (210)
Plane C

I. We must move the origin, since the plane passes through 0, 0, 0. Let’s
move the origin one lattice parameter in the y-direction. Then, x =%, y =—1,
and z =0,

I I 1
=0,—=-1,—=0

X ¥ Z

-2
|

3. No fractions to clear.
4. (010)



Several important aspects of the Miller indices for planes should be noted:

L.

Planes and their negatives are 1dentical (this was not the case for directions)
because they are parallel. Therefore, (020) = (020).

Planes and their multiples are not 1dentical (again, this 1s the opposite of what we
found for directions). We can show this by defining planar densities and planar
packing fractions. The planar density 15 the number of atoms per unit area
with centers that lie on the plane; the packing fraction 15 the fraction of the area
of that plane actually covered by these atoms. Example 3-9 shows how these can
be calculated.

In each unit cell, planes of a form or family represent groups of equivalent planes

that have their particular indices because of the orentation of the coordinates.
We represent these groups of similar planes with the notation {}. The planes of the
form {110} in cubic systems are shown 1n Table 3-4.

[n cubic systems, a direction that has the same indices as a plane 15 perpendicular
to that plane.



TABLE 3-4 W Planes of the form {110} in cubic systems

((110)
(101)
(011)
(110)
(101)
(01T)

11104

Note: The negatives of the planes are not unique planes.

-y

X —-—

|

[010]




3¢ 1 LRI Calculating the Planar Density and Packing Fraction

Calculate the planar density and planar packing fraction for the (010) and (020)
planes 1n simple cubic polonium, which has a lattice parameter of .334 nm.

SOLUTION

The two planes are drawn 1n Figure 3-19. On the (010) plane, the atoms are centered
at each corner of the cube face, with 1/4 of each atom actually in the face of the unit
cell. Thus, the total atoms on each face s one. The planar density 1s

atoms per face | atom per face
areaofface (0,334
= 8.96 atoms/nm’” = 8.96 X 10" atoms/em’

Planar density (010) =



(020) Figure 3-19

SN TN (010) (020)  The planar densities of the
/,, = | \. N (010) and (020) planes in SC
| ( unit cells are not identical
>_ >n< (for Example 3-9).

(010)
\_/ \_A_/

The planar packing fraction is given by

area of atoms per face (1 atom)(7rr)

Packing fraction (010) = ~rea of face = (@)’
0

r2
= = 079

@y

No atoms are centered on the (020) planes. Therefore, the planar density and
the planar packing fraction are both zero. The (010) and (020) planes are not equivalent!




Construction of Directions and Planes o construct a direction

or plane in the unit cell, we simply work backwards. Example 3-10 shows how we might do this.

311432 [Vl Drawing a Direction and Plane

Draw (a) the [121] direction and (b) the (210) plane in a cubic unit cell.

SOLUTION

a. Because we know that we will need to move in the negative y-direction, let’s locate
the origin at 0, +1, (. The “tail” of the direction will be located at this new origin.
A second point on the direction can be determined by moving +1 in the x-direction,
—21n the y-direction, and +1 i the z-direction [Figure 3-20(a)].

b. To draw in the (210) plane, first take reciprocals of the indices to obtain the inter-
cepts, that 1s
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Figure 3-20 Construction of a (a) direction and (b) plane within a unit cell (for Example 3-10).

Since the x-intercept is in a negative direction, and we wish to draw the
plane within the unit cell, let’s move the origin +1 in the x-direction to 1, 0, 0.
Then we can locate the x-intercept at —1/2 and the y-intercept at +1. The

plane will be parallel to the z-axis [Figure 3-20(b)].



Miller Indices for Hexagonal Unit Cells A special set of Miller-
Bravais indices has been devised for hexagonal unit cells because of the unique symmetry of
the system (Figure 3-21). The coordinate system uses four axes instead of three, with the a,
axis being redundant. The axes a,. a,, and a; lie in a plane that is perpendicular to the fourth
axis. The procedure for finding the indices of planes is exactly the same as before, but four
intercepts are required, giving indices of the form (hkil). Because of the redundancy of the
ay axis and the special geometry of the system, the first three integers in the designation, cor-
responding to the a,, a,, and a; intercepts, are related by h + k= —i.

Directions in HCP cells are denoted with either the three-axis or four-axis system.
With the three-axis system, the procedure is the same as for conventional Miller indices;
examples of this procedure are shown in Example 3-11. A more complicated procedure,

Figure 3-21
Miller-Bravais indices are obtained for crystallographic
/I,A planes in HCP unit cells by using a four-axis
) coordinate system. The planes labeled A and B and
the directions labeled C and D are those discussed in

/\ 7 Example 3-11.
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by which the direction 15 broken up into four vectors, 1 needed for the four-axis system.
We determine the number of lattice parameters we must move in each direction to get
from the “tail” to the “head” of the direction, while for consistency still making sure that
h+ k=—i. This 1s illustrated in Figure 3-22, showing that the [010] direction 1s the same
as the [1210] direction.

We can also convert the three-axis notation to the four-axis notation for directions
by the following relationships, where #', k', and [" are the indices in the three-axis system:

1 R

h=—02h — k'
ﬁ )

k—lmy—hj

3 , (3-6)
1

= — (' + K

i 3( )

=1 )

After conversion, the values of A, k, i, and / may require clearing of fractions or
reducing to lowest integers.
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Figure 3-22

Typical directions in the HGP unit
cell, using both three- and four-axis
systems. The dashed lines show

that the [1210] direction is

N -
/““‘[1']3'] =[2110] * equivalent to a [010] direction.
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Determine the Miller-Bravais indices for planes 4 and B and directions Cand D in

Figure 3-21.

SOLUTION
Plane A

. aj=m=ay=m,¢=1

1 1 1 1
2 = — — ﬂ?—
C

ap ay a3

3. No fractions to clear
4. (0001)

"

a

(c) 2003 Brooks/Cole Publishing /
Thomson Learning™




Plane B

1. ﬂ|:11,|!1'2:11,ﬂ3:—§1,£:1
1 1 1 1

2. —=1,—=1,—=-2,—=1
i) () das C

3. Mo fractions to clear.

4. (1121)
Iirection C

1. Two poimntsare 0,0, 1 and 1, 0, 0.
2,001 -1,0,0=-1,0.1
3. No fractions to clear or integers to reduce.

4. [101] or [2113]
Direction D

1. Two points are 0, 1, 0 and 1, 0, 0.
2.0,1,0-1,0,0=-1,1,0
3. No fractions to clear or integers to reduce.

4. [T10] or [T100]

a

(c) 2003 Brooks/Cole Publishing /
Thomson Learning™



Isotropic and Anisotropic Behavior  Because of differences
in atomic arrangement in the planes and directions within a crystal, some properties
also vary with direction. A material 18 crystallographically anisotropic if 1ts properties
depend on the crystallographic direction along which the property 1s measured. For
example, the modulus of elasticity of aluminum is 75.9 GPa (11 x 10° psi) in (111)
directions. but only 63.4 GPa (9.2 x 10° psi) in {100} directions. If the properties are

Figure 3-24

The ABCABCABC stacking
sequence of close-packed
planes produces the FCC
structure.




identical in all directions, the material 1s crystallographically isotropic. Note that a
material such as aluminum, which is crystallographically anisotropic, may behave as an
1sotropic material if 1t 18 1n a polycrystalline form. This 1s because the random orien-
tations of different crystals in a polycrystalline material will mostly cancel out any
effect of the anisotropy as a result of crystal structure. In general, most polycrystalline
materials will exhibit 1sotropic properties. Materials that are single crystals or in which
many grains are oriented along certain directions (naturally or deliberately obtained by
processing) will typically have anisotropic mechanical, optical, magnetic, and dielectric
properties.

Interplanar Spacing  The distance between two adjacent parallel planes
of atoms with the same Miller indices is called the interplanar spacing (). The interpla-
nar spacing in cubic materials 15 given by the general equation
Qg

Vi + k2 + 12

dyy = (3-7)

where aj 1s the lattice parameter and A, k, and [ represent the Miller indices of the adja-
cent planes being considered. The interplanar spacings for non-cubic materials are given
by more complex expressions.



Interstitial Sites

|II

Interstitial sites - Locations between the “normal’” atoms orionsin a
crystal into which another - usually different - atom or ion is placed.
Typically, the size of this interstitial location is smaller than the atom or
ion that is to be introduced.

Cubic site - An interstitial position that has a coordination number of
eight. An atom or ion in the cubic site touches eight other atoms or
ions.

Octahedral site - An interstitial position that has a coordination
number of six. An atom or ion in the octahedral site touches six other
atoms or ions.

Tetrahedral site - An interstitial position that has a coordination
number of four. An atom or ion in the tetrahedral site touches four
other atoms or ions.



Interstitial Sites

In all crystal structures, there are small holes between the usual atoms into which smaller
atoms may be placed. These locations are called interstifial sites.

An atom, when placed into an interstitial site, touches two or more atoms in the
lattice. This interstitial atom has a coordination number equal to the number of atoms it
touches. Figure 3-25 shows interstitial locations i the SC, BCC, and FCC structures.
The cubic site, with a coordination number of eight, occurs in the SC structure at the
body-centered position. Octahedral sites give a coordination number of six (not eight).
They are known as octahedral sites because the atoms contacting the interstitial atom
form an octahedron. Tetrahedral sites give a coordination number of four. As an exam-
ple, the octahedral sites in BCC umit cells are located at the faces of the cube; a small atom
placed in the octahedral site touches the four atoms at the corners of the face, the atom
at the center of the unit cell, plus another atom at the center of the adjacent unit cell, giv-
g a coordination number of six. In FCC unit cells, octahedral sites occur at the center
of each edge of the cube, as well as at the body center of the umit cell.
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Figure 325 The location of the Interstitial sites in cubic unit cells. Only representative sites are shown.



" Example 312 [N

Calculate the number of octahedral sites that uniguely belong to one FCC umnit cell.

SOLUTION

The octahedral sites include the twelve edges of the unit cell, with the coordinates

Loo 410 Lo1 L1
040 140 151 041
005 105 Llz 013

plus the center position, 1/2, 1/2, 1/2. Each of the sites on the edge of the unit cell
is shared between four unit cells, so only 1/4 of each site belongs uniquely to each
unit cell. Therefore, the number of sites belonging uniquely to each cell 1s

12 edges ﬁﬂitﬂ | body-center 1 site
cell edge cell body-center

= 4 octahedral sites/cell



Interstitial atoms or 1ons whose radii are slightly larger than the radius of the
interstitial site may enter that site, pushing the surrounding atoms slightly apart. Atoms
with radii smaller than the radius of the hole are not allowed to fit into the interstitial site
because the ion would “rattle” around in the site. If the interstitial atom becomes too
large, it prefers to enter a site having a larger coordination number (Table 3-6). Therefore,

TABLE 3-6 B The coordination number and the radius ratio

Coordination Number Location of Interstitial Radius Ratio Representation

2 Lirnear 0-0.155

3 Center of triangle 0. 15540225 %
(O

4 Center of tetrahedron 0.225-0.414 fa

6 Center of octahedron 0.414-0.732 "

2 Center of cube 0.732-1.000 C“%}



an atom with a radius ratio between 0.225 and 0.414 enters a tetrahedral site; 1f 1ts radius
15 somewhat larger than 0.414, 1t enters an octahedral site instead.

Many 1onic crystals (see Section 3-7) can be viewed as being generated by close
packing of larger anions. Cations then can be viewed as smaller 1ons that fit into the inter-
stitial sites of the close-packed anions. Thus, the radius ratios described in Table 3-6 also
apply to the ratios of the radius of the cation to that of the anion. The packing in 1onic
crystals 15 not as tight as that in FCC or HCP metals,

Sodium Chloride Structure  The radius ratio for sodium and chlo-
ride ions is ryy+/ e = 0.097 nm/0.181 nm = 0.536; the sodium ion has a charge of +1;
the chloride 1on has a charge of —1. Therefore, based on the charge balance and radius
ratio, each anion and cation must have a coordination number of s1x. The FCC struc-
ture, with CI™! ions at FCC positions and Na™ at the four octahedral sites, satisfies these
requirements (Figure 3-26). We can also consider this structure to be FCC with two
ions—one Nat! and one Cl'—associated with each lattice point. Many ceramics,
including magnesium oxide (MgO), calcium oxide (CaQO), and iron oxide (FeO) have

this structure. Figure 3-26

The sodium chloride structure, a FCC unit
cell with two ions (Na® and CI™) per lattice
point. Note: ion sizes not to scale.




SR W [llustrating a Crystal Structure and Calculating Density

Show that MgO has the sodium chloride crystal structure and calculate the density
of MgQO.

SOLUTION
From Appendix B, ryg+2 = 0.066 nm and rg-2=0.132 nm, so

Mgt 0,066

= = 0.50
ro?  0.132

Since 0.414 < 0.50 < 0.732, the coordination number for each 10on 15 s1x, and the
sodium chlorde structure is possible.

The atomic masses are 24.312 and 16.00 g/mol for magnesium and oxygen.
respectively. The ions touch along the edge of the cube, so

ap = 2ryg2 + 2rg2 = 2(0.066) + 2(0.132) = 0.396 nm = 3.96 % 10® cm
~ (4Mg"™) (24.312) + (4 079 (16.00)
(3.96 x 1078 em’)(6.022 x 10%)

p = 4.31 glem”



Diffraction Techniques for Crystal Structure
Analysis

A crystal structure of a erystalline material can be analyzed using x-ray diffraction (XRD)
or electron diffraction. Max von Laue { 1879-1960) won the Nobel Prize in 1914 for his dis-
covery related to the diffraction of x-rays by a crystal. William Henry Bragg (1862-1942)
and his son William Lawrence Bragg (1890-1971) won the 1915 Nobel Prize for their con-
tributions to XRD.

When a beam of x-rays having a single wavelength on the same order of magni-
tude as the atomic spacing in the matenal strikes that matenal, x-rays are scattered in all
directions. Most of the radiation scattered from one atom cancels out radiation scattered
from other atoms: however, x-rays that strike certain crystallographic planes at specific
angles are remnforced rather than anmihilated. Thas phenomenon is called diffraction. The
x-rays are diffracted, or the beam is reinforced, when conditions satisfy Bragg’s law,

A

snf = M_m-..! (3-8)



where the angle # is half’ the angle between the diffracted beam and the original beam
direction, A is the wavelength of the x-rays, and dyy is the interplanar spacing between
the planes that cause constructive reinforcement of the beam (see Figure 3-36).

When the material is prepared in the form of a fine powder, there are always at
least some powder particles {crystals or aggregates of crystals) with planes (Akl) onented
at the proper f angle to satisfy Bragg's law. Therefore, a diffracted beam, making an angle
of 20 with the incident beam, is produced. In a diffractometer, a moving x-ray detector
records the 20 angles at which the beam is diffracted, giving a characteristic diffraction pat-
tern (see Figure 3-37 on page 98). If we know the wavelength of the x-rays, we can deter-
mine the interplanar spacings and, eventually, the identity of the planes that cause the
diffraction. In an XRD instrument, x-rays are produced by bombarding a metal target
with a beam of high-energy electrons. Typically, x-rays emitted from copper have a wave-
length A = 1.54060 A (K-zy line) and are used.

In the Laue method, which was the first diffraction method ever used, the speci-
men is in the form of a single crystal. A beam of “white radiation” consisting of x-rays
of different wavelengths is used. Fach diffracted beam has a different wavelength.
In the transmission Laue method, photographic film is placed behind the crystal. In the



(a)

Figure 2-36

ta) Desiructive and {b) reinforcing
interactions bobween x-rays and
the crystalline material.
Reinforcement occcurs at angles
that satisfy Bragz's |aw.



back-reflection Lave method, the beams that are back diffracted are recorded on a film
located between the source and sample. From the recorded diffraction patterns, the orien-
tation and quality of the single crystal can be determined. It is also possible to determine
the erystal structure using a rotating erystal and a fixed wavelength x-ray source.

Typically, XRD analysis can be conducted relatively rapidly (30 minutes 1o
1 hour per sample), on bulk or powdered samples and without extensive sample prepara-
tion. This technique can also be used to determine whether the material consists of many
grains oriented in a particular crystallographic direction (texture) in bulk materials and
thin films. Typically, a well-trained technician can conduct the analysis as well as interpret
the powder diffraction data rather easily. As a result, XRD is used in many industries as
one tool for product quality control purposes. Analysis ol single crystals and materials
containing several phases can be more involved and time consuming.

To identify the crystal structure of a cubic material, we note the pattern of the dif-
fracted lines—typically by creating a table of sin*9 values. By combining Equation 3-7
with Equation 3-8 for the interplanar spacing, we hind that:

32
sin’d =— (i + i+ B

At

In simple cubic metals, all possible planes will diffract, giving an h® + k% + 1 pattern of 1,
2.3, 4.5 6 8 ....Inbody-centered cubic metals, diffraction oceurs only from planes
having an even h* + k% + [ sum of 2,4, 6,8, 10,12, 14, 16, . . . . For face-centerad cubic
metals, more destructive interference occurs, and planes having A2+ k2 + /% sums of 3, 4,
B, 11, 12, 16, . . . will diffract. By calculating the values of sin® A and then finding the
appropriate patiern, the crystal structure can be determined for metals having one of these

simple structures, as illustrated in Example 3-20.
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Figure 3-37 {al Driagram of a diffractometer, showing powder sampie, incident and diffracied
beams. {b) The diffraction patiern obtained from a sample of gold powdar.



5 =1 o[BS B Examining X-ray Diffraction Data

The results of” an x-ray diffraction experiment using x-rays with A = 0.7107 A (radi-
ation obtained from a molybdenum (Mo) target) show that diffracted peaks occur
at the following 28 angles:

Peak 28(7) Peak 28(7)

1 2020 5 4519
2 2872 b 50.90
3 3536 7 55.28
4 41.07 8 58.42

Determine the crystal structure, the indices of the plane producing each
peak. and the lattice parameter of the matenal.

SOLUTION

We can first determine the sin®® value for each peak. then divide th rough by the
lowest denomimator, 00308,

Peak 28() sin?@ sin®@ /0.03208 4+ k4 2 { ik}
1 200 .20 0,030 1 2 {110
2 2B T2 00515 2 e [200F
3 e L O.0a22 = & {211}
< 41 .07 0.1230 -1 B {220
L 4519 0.1539 5 10 {(310F
& S0 01847 & 12 (222}
ri hi5 8 02152 r 143 (321}
a8 RO 42 0. 2455 g 18 {00k




When we do this, we find a pattern of sin® 8/0.030% values of 1,2, 3 4, 5,
6, 7. and 8. If the material were simple cubic, the 7 would not be present, because

no planes have an A% + kT + 12 value of 7. Therefore, the pattern must really be 2, 4,
B, B, 10, 12, 14, 16, ... and the material must be body-centered cubic. The (A& val-

ues listed give these required A* + &2 + 1% values.
We could then use 28 values for any of the peaks 1o calculate the inter-
planar spacing and thus the lattice parameter. Picking peak B:
28 = 5942 or # = 271°
A 07107
2sin®  2sin (29.71)

apg = dugp™ I + K2 + B = (0.T1699H4) = 2.868 A

= 0. 71699 A
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This is the lattice parameter for body-centered cubic iron.

Electron Diffraction and Microscopy Louis de Broglie theo-
rized that electrons behave like waves. In electron diffraction, we make use of high-energy
(~— 100,000 to 400,000 V) electrons. These electrons are diffracted from electron trans-
parant samples of materials. The electron beam that exits from the sample is also used to
form an image of the sample. Thos, transmission electron microscopy and electron diffrac-
tion are used for imaging microstructural features and determining crystal structures.

A 100D eV electron has a wavelength of about 00004 nm! This ultra-small wave-
length of high-energy electrons allows a transmission electron microscope (TEM) to simulta-
neously mage the microstructure at a very fme scale. It the sample is too thick, electrons
cannotl be transmitied through the sample and an image or a diffraction pattern will not be
abserved. Therefiore, in transmission electron microscopy and electron diffraction, the sam-
ple has to be made sech that portions of it are electron transparent. A transmission electron
microscope is the instrument used for this purpose. Figure 3-38 shows a TEM image and an
electron diffraction pattern from an area of the sample. The large bright spots correspond to
the grains of the matrix. The smaller spots originate from small crystals of another phase

Another advantage to using a TEM is the high spatial resolution. Using TEM, it
is possible to determine differences between different crystalline regions and between



Figure 3-38 A TEM micrograph of an aluminum alloy (Al-7055) sample. The diffraction
pattern at the right shows large bright spots that represent diffraction from the main
aluminum matrix grains. The smaller spots originate from the nanoscale crystals of another
compound that is present in the aluminum alloy. (Courfesy of Dr. Jovg M. K. Wiezorek,
University of Pitisburgh.)

amorphous and crystalline regions at very small length scales (—1-10 nm). This analyti-
cal technigue and its variations {(e.g.. high-resolution electron microscopy (HREM), scan-
ning transmission e¢lectron microscopy (STEM), ¢tc.) are also used to determine the
orientation of different grains and other microstructural features discussed in later chap-
ters. Advanced and specialized features associated with TEM also allow chemical mapping
of elements in a given material. Some of the disadvantages associated with TEM include

(a) the time consuming preparation of samples that are almost transparent 1o the elec-
tron beam;

(b) considerable amount of time and skill are required for analysis of the data from a
thin, three-dimensional sample. that is represented in a two-dimensional image
and diffraction pattern:

(c) only a very small volume of the sample is examined: and

(d} the equipment 18 relatively expensive and requires great care in use.

In general, TEM has become a widely used and accepted research method for
analysis of microstructural features at micro- and nano-length scales



