Extraction Metallurgy Of Copper

Reminder: Pyrometallurgy is the use of heat to reduce the mineral to the free metal, and usually involves 4 main steps:

- Calcination: thermal decomposition of the ore with associated elimination of a volatile product.
- Roasting: a metallurgical treatment involving gassolids reactions at elevated temperatures.
- 3. Smelting: a melting process which separates the chemical reaction products into 2 or more layers
- Refining: treatment of a crude metal product to improve its purity.

Cu ore usually associated with sulphide minerals.

Most common source of Cu ore is the mineral chalcopyrite (CuFeS₂), which accounts for \pm 50% of Cu production.

Other important ores include:

```
chalcocite [Cu_2S],
malachite [CuCO_3 \cdot Cu(OH)_2],
azurite [2CuCO_3 \cdot Cu(OH)_2],
bornite (3Cu_2S \cdot Fe_2S_3),
covellite (CuS).
```

The following steps are involved in Cu extraction:

- 1. Concentration
- 2. Roasting
- 3. Smelting
- 4. Conversion
- 5. Refining

1. Concentration

Finely crushed ore concentrated by the froth-flotation process:

- Ground ore mixed with xanthates (salts & esters of xanthic acid), dithiophosphates, or thionocarbamates.
 These make the ore surface hydrophobic.
- Ore then introduced into a water bath where air is bubbled through the suspension.
- Finely divided hydrophobic ore particles latch on to the air bubbles and travel to the surface where a froth is formed.

1. Concentration (cont.)

- The froth containing the Cu ore is skimmed off and reprocessed.
- The remaining material (sand particles & other impurities) sink to the bottom & is discarded or reprocessed to extract other elements.

2. Roasting

- Involves partial oxidation of the sulphide mineral with air at between 500°C and 700°C.
- For chalcopyrite, the main reactions are:
 CuFeS₂(s) + 4O₂(g) → CuSO₄(s) + FeSO₄(s)
 4CuFeS₂(s) + 13O₂(g) → 4CuO(s) + 2Fe₂O₃(s) + 8SO₂(g)
- Reactions are exothermic, : roasting is an autogenous process requiring little or no additional fuel.
- NB, not all the sulphides are oxidised, only around 1/3.
 Rest remain as sulphide minerals.
- The gases produced contain around 5 15% SO₂, which is used for sulphuric acid production.

2. Roasting (cont.)

Objectives of roasting:

- 1) Remove part of the sulphur.
- Convert iron sulphides into iron oxide and iron sulphate to facilitate removal during smelting.
- To pre-heat the concentrate to reduce amount of energy needed by the smelter.

3. Smelting

- Smelting consists of melting the roasted concentrate to form 2 molten phases:
 - a sulphide "matte", which contains the iron-copper sulphide mixture.
 - 2) an oxide slag, which is insoluble in the matte, and contains iron oxides, silicates, and other impurities
- Smelting is carried out at around 1200°C, usually with a silica flux to make the slag more fluid.
- The matte layer sinks to the bottom, and the slag layer floats on top of the matte & is tapped off & disposed of.

3. Smelting (cont.)

 The main reaction is the reduction of copper oxides (formed during roasting) back into copper sulphide to ensure that they migrate into the matte phase:

FeS(I) + 6CuO(I)
$$\rightarrow$$
 3Cu₂O(I) + FeO(I) + SO₂(g)
FeS(I) + Cu₂O(I) \rightarrow FeO(I) + Cu₂S(I)
Cu₂S(I) + FeS(I) \rightarrow Cu₂S•FeS(I) (matte)

4. Conversion

- After smelting, matte contains from between 30 to 80% Cu in the form of copper sulphide.
- The sulphur is removed by selective oxidation of the matte with O₂ to produce SO₂ from S, but leave Cu metal.
- Converting is carried out in two stages: 1) an iron removal stage, and 2) a copper-making stage.

4. Conversion (cont.)

Iron removal

- A silica flux is added to keep the slag (see below) molten.
- Air is blown into the converter to oxidize the iron sulphide according to the following reaction:

$$2Cu_2S \cdot FeS(I) + 3O_2(g) + SiO_2(I) \rightarrow 2FeO \cdot SiO_2(I) + 2SO_2(g) + Cu_2S(I)$$

 The oxidized Fe and Si form a slag (insoluble in matte) that is skimmed off & disposed off.

4. Conversion (cont.)

Copper making

 The sulphur in the Cu₂S can now be oxidized to leave behind metallic copper according to the following reaction:

$$Cu_2S(I) + O_2(g) \rightarrow 2Cu(I) + SO_2(g)$$

 The end product is around 98.5% pure & is known as blister copper because of the broken surface created by the escape of SO₂ gas.

5. Refining

- · The copper is refined by electrolysis.
- The anodes (cast from blister copper) are placed into an aqueous CuSO₄/H₂SO₄ solution.
- Thin sheets of highly pure Cu serve as the cathodes.
- Application of a suitable voltage causes oxidation of Cu metal at the anode.
- Cu²⁺ ions migrate through the electrolyte to the cathode, where Cu metal plates out.

5. Refining (cont.)

- Metallic impurities more active then Cu are oxidized at the anode, but don't plate out at the cathode.
- Less active metals are not oxidized at the anode, but collect at the bottom of the cell as a sludge.
- The redox reactions are:

$$Cu(s) \rightarrow Cu^{2+}(aq) \ 2e^{-}$$

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \quad E^{\circ}_{red} = -0.83V$

<u>Advantages</u>

- Much more environmentally friendly than pyrometallurgy.
- Compared to pyrometallurgy, only a fraction of the gases liberated into the atmosphere.
- Emissions of solid particles comparatively nonexistent.

Disadvantages

- Large amount of water used, ... greater potential for contamination.
- Waste waters contain soluble metal compounds, chelating compounds & organic solvents.

The following steps are involved:

- 1. Ore preparation
- 2. Leaching
- 3. Solution purification
- Metal recovery

1. Ore preparation

 Ore undergoes some degree of comminution (crushing & pulverisation) to expose the Cu oxides & sulphides to leaching solution

2. Leaching

Definition: The dissolution of a mineral in a solvent, while leaving the gangue (rock or mineral matter of no value) behind as undissolved solids.

- Cu is normally leached by one of three methods:
 - (a) Dump leaching
 - (b) Heap leaching
 - (c) Bacterial leaching

2. Leaching (cont.) (a) Dump leaching

- Leaching solution trickled over a dump.
- Runoff solution collected & the Cu recovered from it.
- A slow process that takes months or years to complete.
- Typically only around 60% of the Cu in the dump is recovered.

2. Leaching (cont.) (b) Heap leaching

- Similar to dump leaching except ore not simply dumped on a hillside, but is crushed to gravel size & piled onto an artificial pad.
- After leaching (6 months to 1 year) gangue is removed from pad, disposed of & replaced with fresh ore.

3. Solution Purification

- Leaching reactions not perfectly selective : other elements in solution as well, not just Cu. These need to be removed.
- After leaching, Cu in solution can be very dilute. : need a way to concentrate it.
- Both of these are generally done using ion exchange processes, the two most common being ion exchange chromatography, and solvent extraction

3. Solution Purification

Ion exchange chromatography

- DEFINITION: a solution containing a mixture of metal ions is contacted with a resin that is insoluble in the metal-ion solution.
- Ion-exchange resin consists of an inert solid phase to which labile functional groups are chemically bonded.
- Functional groups can either be acidic (H+) or basic (OH-) groups that exchange with cations (M+) or anions (M-), respectively.
- The ion-exchange process is reversible.

3. Solution Purification: Solvent extraction

- DEFINITION: a method to separate compounds based on their relative solubilities in 2 different immiscible liquids.
- In industry, this is usually set up as a continuous process

The copper ores undergo different processing depending on their chemistries

