Number Systems

Objectives

- After studying this chapter, the student should be able to:
- **Understand the concept of number systems.**
- Distinguish between non-positional and positional number systems.
- **Describe the decimal, binary, hexadecimal and octal system.**
- Convert a number in binary, octal or hexadecimal to a number in the decimal system.
- □ Convert a number in the decimal system to a number in binary, octal and hexadecimal.
- **Convert a number in binary to octal and vice versa.**
- **Convert a number in binary to hexadecimal and vice versa.**

A **number system** defines how a number can be represented using distinct symbols. A number can be represented differently in different systems. For example, the two numbers $(2A)_{16}$ and $(52)_8$ both refer to the same quantity, $(42)_{10}$, but their representations are different. $(2A)_{16} = (52)_8 = (42)_{10}$

Several number systems have been used in the past and can be categorized into two groups: **positional** and **non-positional** systems. Our main goal is to discuss the positional number systems, but we also give examples of non-positional systems.

Common Number Systems

Summary of the four positional number systems

System	Base	Symbols	Examples
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	2345.56
Binary	2	0, 1	(1001.11) ₂
Octal	8	0, 1, 2, 3, 4, 5, 6, 7	(156.23) ₈
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	(A2C.A1) ₁₆

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Conversion Among Bases

• The possibilities:

Quick Example

$25_{10} = 11001_2 = 31_8 = 19_{16}$ Base

Decimal to Decimal (just for fun)

- Computers are made of a series of switches
- Each switch has two states: ON or OFF
- Each state can be represented by a number – 1 for "ON" and 0 for "OFF"

Example 2.17

An alternative method for converting a small decimal integer (usually less than 256) to binary is to break the number as the sum of numbers that are equivalent to the binary place values shown:

	Place va	alues			2′	2 ⁶		2 ⁵	2 ⁴	2 ³	24	2	21	20		
	Decima	l equiv	/aler	nt	128	64		32	16	8	4		2	1		
Decimal	165 =	128	+	0	+	32	+	0	+	0	+	4	+	0	+	1
Binary		1		0		1		0		0		1		0		1

Binary to Decimal

Binary to Decimal

- Technique
 - Multiply each bit by 2ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Octal to Decimal

Octal to Decimal

- Technique
 - Multiply each bit by 8^n , where *n* is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

$$724_8 \implies 4 \times 8^0 = 4$$

$$2 \times 8^1 = 16$$

$$7 \times 8^2 = \frac{448}{468_{10}}$$

Hexadecimal to Decimal

Hexadecimal to Decimal

- Technique
 - Multiply each bit by 16ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

 $ABC_{16} \implies C \times 16^{0} = 12 \times 1 = 12$ B x 16¹ = 11 x 16 = 176 A x 16² = 10 x 256 = 2560 2748_{10}

Decimal to Binary

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

$125_{10} = ?_2$

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

 $705_8 = 111000101_2$

 $705_8 = ?_2$

Hexadecimal to Binary

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation

 $10AF_{16} = ?_2$

 $10AF_{16} = 0001000010101111_{2}$

Decimal to Octal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

 $1234_{10} = ?_8$

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder

 $1234_{10} = ?_{16}$

Binary to Octal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

 $1011010111_2 = ?_8$

$1011010111_2 = 1327_8$

Binary to Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

 $1010111011_2 = ?_{16}$

 $1010111011_2 = 2BB_{16}$

Octal to Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

$$1076_8 = ?_{16}$$

 $1076_8 = 23E_{16}$

Hexadecimal to Octal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

$$1F0C_{16} = ?_8$$

 $1F0C_{16} = 17414_8$

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Skip answer

Answer

Exercise – Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

