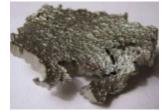
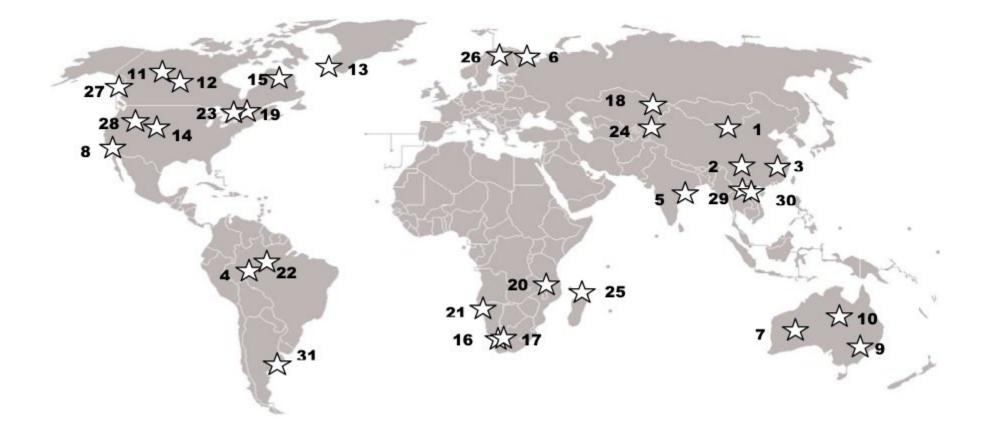
Rare Earth


Introduction to the Rare Earth Elements

- 15 lanthanides
- La through Lu
 - Pm is rare in nature mostly human-made
- Plus scandium and yttrium are often included
- a.k.a. Rare Earth Minerals, Oxides, and/or Metals

1 H Hydropen 1.00794																	2 He Helium 4.003
3	4			/			LF	REE				5	6	7	8	9	10
Lithium	Be				REE)						Boron	Carbon	N Nitrogen	Oxygen	F Fluorine	Ne
6.941	9.012182						HF	REE				10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
Na												Al	Si	P	S	$\mathbf{\hat{C}}$	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.989770	24.3050	21	22	23	24	25	26	27	28	29	30	26.981538 31	28.0855 32	30.973761 33	32.066 34	35.4527 35	39.948 36
ĸ	Ča	Se	Ti	v	Ĉr	Mn	Fe	Co	Ni	Ĉu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39,0983	Calcium 40.078	Scandium 44.955910	Titanium 47,867	Vanadiam 50.9415	Chromium 51,9961	Manganasa 54,938049	1ron 55,845	Cobali 58,933200	Nickel 58,6934	Coppor 63,546	7mc 65.39	Gallium 69,723	Germanium 72.61	Arcenic 74.92160	Solonium 78.96	Roomine 79,904	Krypton 83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cessum 132.90545	Barium 137.327	Lanthanum 38.905	Hafneum 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Indium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208,98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Francium	Ra	Ac	Rf	Dubnium	Seaborgium	Bh	Hassium	Mt									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
				58	- 59	60	61	62	63	64	65	66	67	68	69	70	71
			6	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
					Prascodymium	Neodymium	Promethium (145)	Samarium 150,36	Europium 151.964	Gadolinium	Techiam 158.92534	Dysprosium	Ilolmium 164,93032	Erbiums 167,26	Thulium	Vncrbium	174,967
				140.116 90	91	92	93	94	95	157.25 96	97	162.50 98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Thorium 232.0381	Protactinium 231.03588	Uranium 238.0289	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)



Yttrium

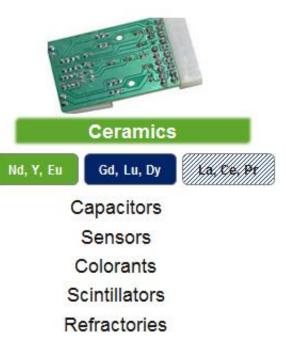
Periodic table of the elements showing the division between LREEs and HREEs (Schuler et al., 2011).

RARE EARTH ELEMENTS

- The rare earth metals include sixteen elements such as:
- yttrium (atomic number 39),
- lanthanum (57),
- Cerium (58),
- praseodymium (59),
- neodymium (60),
- promethium (61),
- samarium (62),
- europium (63),
- gadolinium (64),
- terbium (65),
- dysprosium (66),
- holmium (67),

Technological applications of rare earths

- Rare earth metals and their compounds are in demand, and are often crucial for, a broad and rapidly expanding range of applications that rely upon their chemical, catalytic, electrical, magnetic, and optical properties.
- Rare earths are widely used for traditional sectors including metallurgy, petroleum, textiles, and agriculture.
- They are also becoming uniquely indispensable and critical in many high-tech industry such as hybrid cars, wind turbines, and compact fluorescent lights, flat screen televisions, mobile phones, disc drives, and defence technologies


Magnetics Tb, Dy

Computer Hard Drives Disk Drive Motors Anti-Lock Brakes Automotive Parts Frictionless Bearings Magnetic Refrigeration Microwave Power Tubes Power Generation Microphones & Speakers Communication Systems MRI

Display phosphors - CRT, LPD, LCD Fluorescent Lighting Medical Imaging Lasers Fibre Optics

X-Ray Imaging

Petroleum Refining Catalytic Converter Fuel Additives Chemical Processing Air Pollution Controls

Satellite Communications Guidance Systems Aircraft Structures Fly-by-Wire Smart Missiles

Minerals

- The two major minerals used as sources of rare earth metals are monazite (Ce-La-Nd-Pr phosphate) and bastnasite (Ce-La-Nd-Pr fluorcarbonate).
- Monazite is, or has been, mined in Australia, India, the United States, and other areas to a lesser degree.
- Bastnasite is primarily mined in the United States and China.
- Several other ores are mined for the rare earths as well, including xenotine, apatite, yttrofluorite, cerite, and gadolinite.

Mineral Processing

- Covert the as-mined ore into a product that may be marketed or treated further.
- This involves the removal of impurity compounds from the material being processed.
- For Rare Earths, this is complicated by the special operations required to separate the rare earths from each other (chemically).

Monazite

In placer deposits, monazite may occur as a

- minor constituent along with sillimanite, garnet, and magnetite, while the major minerals are ilmenite, rutile, zircon and quartz.
- Other minerals that may occur in some locations are: cassiterite, chromite, picotite, baddeleyite, cinnabar, gold and platinum.
- Beach sand deposits may exhibit considerable variation and thus their flow sheets may be variable in detail.
- The next figure shows a general overview of beach sand processing.

Example Flow Sheet – Mineral Processing – Gravity, Magnetic and – Electrostatic Separations

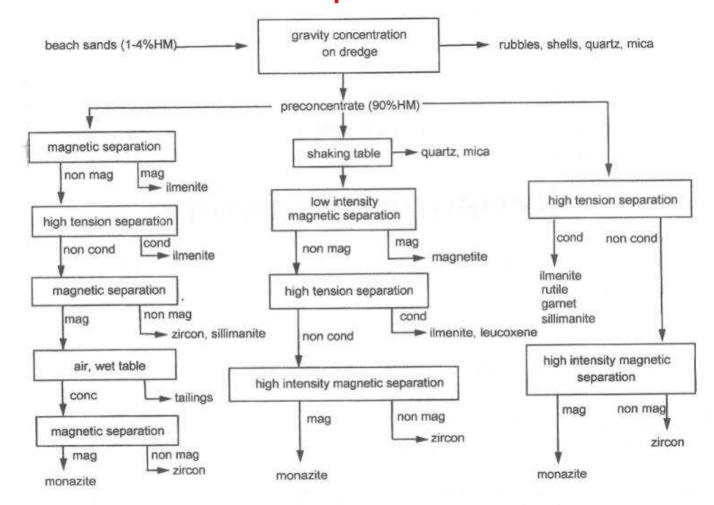


Figure 3.1 Physical beneficiation of beach sand minerals.

Monazite Ore Processing

- The ore undergoes grinding, spiraling, or other similar operations for the initial coarse upgrading of the ore.
- Magnetic separation removes the magnetic ore constituents which can be processed separately or discarded as waste.
- The refined ore is then digested with sulfuric acid at 200- 220°C.
- Rare earth sulfates and thorium sulfates are then dissolved and removed from the waste monazite solids by filtration.
- Rare earth elements are then precipitated as oxalates or sulfates. These precipitates undergo separations to form rare earth oxides.

Mineral Separations

- The separation of heavy minerals exploits small differences in specific gravity, magnetic susceptibility and surface ionization potential (conductivity). Monazite is typically the heaviest.
- Ilmenite, garnet, xenotime and monazite, in decreasing order of magnetizability, behave as magnetic minerals. Xenotime is more strongly magnetic than monazite.
- In electrostatic separations, ilmenite and rutile act as conducting materials. Xenotime is a poor conductor and can be separated from ilmenite.
- Leucoxene can cause problems in the separation of monazite from ilmenite. A reduction roast of at 600 c converts the iron oxide in leucoxene into magnetite and enables easy separation.

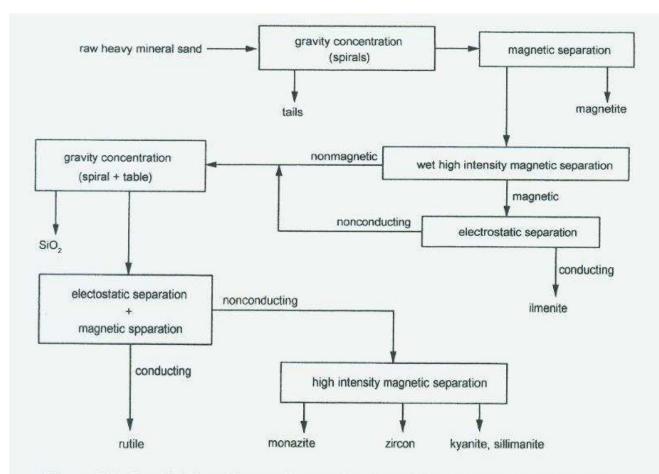


Figure 3.4 Beneficiation of coarse heavy mineral sand from Congolone, Mozambique (Ferron et al. 1991).

BASTNASITE ORE PROCESSING

- Bastnasite mining near Mountain Pass in southeastern California may be a the major source of rare earth metals in the U.S. again.
- The previous recovery process of the rare earths from this ore is shown in the following figure.
- The ore was initially crushed, ground, classified, and concentrated by flotation to increase the rare earth concentrations from about 5% to about 60% (REO).
- The concentrated bastnasite undergoes an acid (HCl) digestion to produce several rare earth chlorides.
- The resulting slurry is filtered and the solution is treated with sodium hydroxide to produce rare earth hydroxides.
- This rare earth hydroxide cake is chlorinated, converting the hydroxides to chlorides.
- Final filtration and evaporation yields the solid rare earth chloride products.

Mountain Pass Flotation

- 30-35% solids. Rougher flotation brings the grade from about 9% to 20% REO. Tails are 1-2% REO.
- Four stage cleaning is used tailings are re circulated.
- The scavenger cons are reground and recirculated to roughers.
- After four stage cleaning, the final concentrate is thickened, filtered and dried
- The grade is 60% REO and the recovery is 65-70%

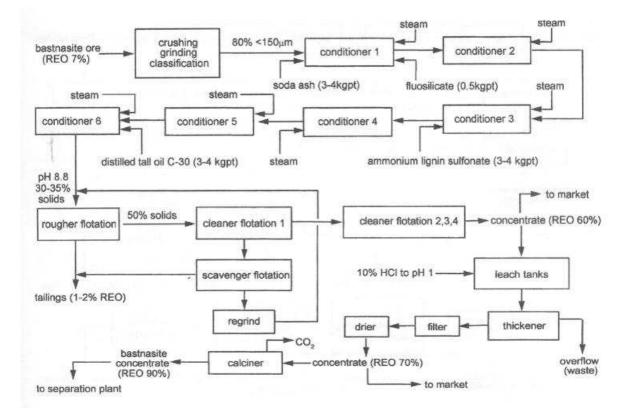


Figure 3.9 Simplified flowsheet for the recovery of bastnasite at the Molycorp plant (Aplan 1988).